Do you want to publish a course? Click here

Microphysical Modeling of Mineral Clouds in GJ1214 b and GJ436 b: Predicting Upper Limits on the Cloud-Top Height

95   0   0.0 ( 0 )
 Added by Kazumasa Ohno
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ubiquity of clouds in the atmospheres of exoplanets, especially of super-Earths, is one of the outstanding issues for transmission spectra survey. The understanding about the formation process of clouds in super-Earths is necessary to interpret the observed spectra correctly. In this study, we investigate the vertical distributions of particle size and mass density of mineral clouds in super-Earths using a microphysical model that takes into account the vertical transport and growth of cloud particles in a self-consistent manner. We demonstrate that the vertical profiles of mineral clouds significantly vary with the concentration of cloud condensation nuclei and atmospheric metallicity. We find that the height of the cloud top increases with increasing metallicity as long as the metallicity is lower than a threshold. If the metallicity is larger than the threshold, the cloud-top height no longer increases appreciably with metallicity because coalescence yields larger particles of higher settling velocities. We apply our cloud model to GJ1214 b and GJ436 b for which recent transmission observations suggest the presence of high-altitude opaque clouds. For GJ436 b, we show that KCl particles can ascend high enough to explain the observation. For GJ1214 b, by contrast, the height of KCl clouds predicted from our model is too low to explain its flat transmission spectrum. Clouds made of highly porous KCl particles could explain the observations if the atmosphere is highly metal-rich, and hence the particle microstructure might be a key to interpret the flat spectrum of GJ1214 b.



rate research

Read More

We determine the observability in transmission of inhomogeneous cloud cover on the limbs of hot Jupiters through post processing a general circulation model to include cloud distributions computed using a cloud microphysics model. We find that both the east and west limb often form clouds, but that the different properties of these clouds enhances the limb to limb differences compared to the clear case. Using JWST it should be possible to detect the presence of cloud inhomogeneities by comparing the shape of the transit lightcurve at multiple wavelengths because inhomogeneous clouds impart a characteristic, wavelength dependent signature. This method is statistically robust even with limited wavelength coverage, uncertainty on limb darkening coefficients, and imprecise transit times. We predict that the short wavelength slope varies strongly with temperature. The hot limb of the hottest planets form higher altitude clouds composed of smaller particles leading to a strong rayleigh slope. The near infrared spectral features of clouds are almost always detectable, even when no spectral slope is visible in the optical. In some of our models a spectral window between 5 and 9 microns can be used to probe through the clouds and detect chemical spectral features. Our cloud particle size distributions are not log-normal and differ from species to species. Using the area or mass weighted particle size significantly alters the relative strength of the cloud spectral features compared to using the predicted size distribution. Finally, the cloud content of a given planet is sensitive to a species desorption energy and contact angle, two parameters that could be constrained experimentally in the future.
The warm Neptune GJ436b was observed with HST/STIS at three different epochs in the stellar Ly-alpha line, showing deep, repeated transits caused by a giant exosphere of neutral hydrogen. The low radiation pressure from the M-dwarf host star was shown to play a major role in the dynamics of the escaping gas. Yet by itself it cannot explain the time-variable spectral features detected in each transit. Here we investigate the combined role of radiative braking and stellar wind interactions using numerical simulations with the EVaporating Exoplanet code (EVE) and we derive atmospheric and stellar properties through the direct comparison of simulated and observed spectra. Our simulations match the last two epochs well. The observed sharp early ingresses come from the abrasion of the planetary coma by the stellar wind. Spectra observed during the transit can be produced by a dual exosphere of planetary neutrals (escaped from the upper atmosphere of the planet) and neutralized protons (created by charge-exchange with the stellar wind). We find similar properties at both epochs for the planetary escape rate (2.5x10$^{8}$ g/s), the stellar photoionization rate (2x10$^{-5}$ /s), the stellar wind bulk velocity (85 km/s), and its kinetic dispersion velocity (10 km/s). We find high velocities for the escaping gas (50-60 km/s) that may indicate MHD waves that dissipate in the upper atmosphere and drive the planetary outflow. In the last epoch the high density of the stellar wind (3x10$^{3}$ /cm3) led to the formation of an exospheric tail mainly composed of neutralized protons. The observations of GJ436 b allow for the first time to clearly separate the contributions of radiation pressure and stellar wind and to probe the regions of the exosphere shaped by each mechanism.
One significant difference between the atmospheres of stars and exoplanets is the presence of condensed particles (clouds or hazes) in the atmosphere of the latter. The main goal of this paper is to develop a self-consistent microphysical cloud model for 1D atmospheric codes, which can reproduce some observed properties of Earth, such as the average albedo, surface temperature, and global energy budget. The cloud model is designed to be computationally efficient, simple to implement, and applicable for a wide range of atmospheric parameters for planets in the habitable zone. We use a 1D, cloud-free, radiative-convective, and photochemical equilibrium code originally developed by Kasting, Pavlov, Segura, and collaborators as basis for our cloudy atmosphere model. The cloud model is based on models used by the meteorology community for Earths clouds. The free parameters of the model are the relative humidity and number density of condensation nuclei, and the precipitation efficiency. In a 1D model, the cloud coverage cannot be self-consistently determined, thus we treat it as a free parameter. We apply this model to Earth (aerosol number density 100 cm^-3, relative humidity 77 %, liquid cloud fraction 40 %, and ice cloud fraction 25 %) and find that a precipitation efficiency of 0.8 is needed to reproduce the albedo, average surface temperature and global energy budget of Earth. We perform simulations to determine how the albedo and the climate of a planet is influenced by the free parameters of the cloud model. We find that the planetary climate is most sensitive to changes in the liquid water cloud fraction and precipitation efficiency. The advantage of our cloud model is that the cloud height and the droplet sizes are self-consistently calculated, both of which influence the climate and albedo of exoplanets.
DH Tau is a young ($sim$1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious H${alpha}$ emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of $17.2pm1.7,M_{oplus}$, which gives a disk-to-star mass ratio of 0.014 (assuming the usual Gas-to-Dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42$M_{oplus}$ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model including heating of the circumplanetary disk by DH Tau b and DH Tau A suggests that a mass averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09$M_{oplus}$ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models.
Using all the RXTE archival data of Sco X-1 and GX 5-1, which amount to about 1.6 mega seconds in total, we searched for possible occultation events caused by Oort Cloud Objects. The detection efficiency of our searching approach was studied with simulation. Our search is sensitive to object size of about 300 m in the inner Oort Cloud, taking 4000 AU as a representative distance, and of 900 m in the outer Oort Cloud, taking 36000 AU as the representative distance. No occultation events were found in the 1.6 Ms data. We derived upper limits to the number of Oort Cloud Objects, which are about three orders of magnitude higher than the highest theoretical estimates in the literature for the inner Oort Cloud, and about six orders higher for the outer Oort Cloud. Although these upper limits are not constraining enough, they are the first obtained observationally, without making any model assumptions about comet injection. They also provide guidance to such serendipitous occultation event search in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا