Do you want to publish a course? Click here

Upper limits to the number of Oort Cloud Objects based on serendipitous occultation events search in X-rays

104   0   0.0 ( 0 )
 Added by Hsiang-Kuang Chang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using all the RXTE archival data of Sco X-1 and GX 5-1, which amount to about 1.6 mega seconds in total, we searched for possible occultation events caused by Oort Cloud Objects. The detection efficiency of our searching approach was studied with simulation. Our search is sensitive to object size of about 300 m in the inner Oort Cloud, taking 4000 AU as a representative distance, and of 900 m in the outer Oort Cloud, taking 36000 AU as the representative distance. No occultation events were found in the 1.6 Ms data. We derived upper limits to the number of Oort Cloud Objects, which are about three orders of magnitude higher than the highest theoretical estimates in the literature for the inner Oort Cloud, and about six orders higher for the outer Oort Cloud. Although these upper limits are not constraining enough, they are the first obtained observationally, without making any model assumptions about comet injection. They also provide guidance to such serendipitous occultation event search in the future.



rate research

Read More

To study the population properties of small, remote objects beyond Neptunes orbit in the outer solar system, of kilometer size or smaller, serendipitous occultation search is so far the only way. For hectometer-sized Trans-Neptunian Objects (TNOs), optical shadows actually disappear because of diffraction. Observations at shorter wave lengths are needed. Here we report the effort of TNO occultation search in X-rays using RXTE/PCA data of Sco X-1 taken from June 2007 to October 2011. No definite TNO occultation events were found in the 334 ks data. We investigate the detection efficiency dependence on the TNO size to better define the sensible size range of our approach and suggest upper limits to the TNO size distribution in the size range from 30 m to 300 m. A list of X-ray sources suitable for future larger facilities to observe is proposed.
We present a chronology of the formation and early evolution of the Oort cloud by simulations. These simulations start with the Solar System being born with planets and asteroids in a stellar cluster orbiting the Galactic center. Upon ejection from its birth environment, we continue to follow the evolution of the Solar System while it navigates the Galaxy as an isolated planetary system. We conclude that the range in semi-major axis between 100au and several 10$^3$,au still bears the signatures of the Sun being born in a 1000MSun/pc$^3$ star cluster, and that most of the outer Oort cloud formed after the Solar System was ejected. The ejection of the Solar System, we argue, happened between 20Myr and 50Myr after its birth. Trailing and leading trails of asteroids and comets along the Suns orbit in the Galactic potential are the by-product of the formation of the Oort cloud. These arms are composed of material that became unbound from the Solar System when the Oort cloud formed. Today, the bulk of the material in the Oort cloud ($sim 70$%) originates from the region in the circumstellar disk that was located between $sim 15$,au and $sim 35$,au, near the current location of the ice giants and the Centaur family of asteroids. According to our simulations, this population is eradicated if the ice-giant planets are born in orbital resonance. Planet migration or chaotic orbital reorganization occurring while the Solar System is still a cluster member is, according to our model, inconsistent with the presence of the Oort cloud. About half the inner Oort cloud, between 100 and $10^4$,au, and a quarter of the material in the outer Oort cloud, $apgt 10^4$,au, could be non-native to the Solar System but was captured from free-floating debris in the cluster or from the circumstellar disk of other stars in the birth cluster.
83 - D. Mesa , A. Zurlo , J. Milli 2016
The recent discovery of an earth-like planet around Proxima Centauri has drawn much attention to this star and its environment. We performed a series of observations of Proxima Centauri using SPHERE, the planet finder instrument installed at the ESO Very Large Telescope UT3, using its near infrared modules, IRDIS and IFS. No planet was directly detected but we set upper limits on the mass up to 7 au exploiting the AMES-COND models. Our IFS observations reveal that no planet more massive than ~6-7 M Jup can be present within 1 au. The dual band imaging camera IRDIS also enables us to probe larger separations than the other techniques like the radial velocity or astrometry. We obtained mass limits of the order of 4 M Jup at separations of 2 au or larger representing the most stringent mass limits at separations larger than 5 au available at the moment. We also did an attempt to estimate the radius of possible planets around Proxima using the reflected light. Since the residual noise for this observations are dominated by photon noise and thermal background, longer exposures in good observing conditions could further improve the achievable contrast limit.
Context: Distant trans-Neptunian objects are subject to planetary perturbations and galactic tides. The former decrease with the distance, while the latter increase. In the intermediate regime where they have the same order of magnitude (the inert Oort cloud), both are weak, resulting in very long evolution timescales. To date, three observed objects can be considered to belong to this category. Aims: We aim to provide a clear understanding of where this transition occurs, and to characterise the long-term dynamics of small bodies in the intermediate regime: relevant resonances, chaotic zones (if any), and timescales at play. Results: There exists a tilted equilibrium plane (Laplace plane) about which orbits precess. The dynamics is integrable in the low and high semi-major axis regimes, but mostly chaotic in between. From 800 to 1100 au, the chaos covers almost all the eccentricity range. The diffusion timescales are large, but not to the point of being indiscernible in a 4.5 Gyrs duration: the perihelion distance can actually vary from tens to hundreds of au. Orbital variations are favoured in specific ranges of inclination corresponding to well-defined resonances. Starting from uniform distributions, the orbital angles cluster after 4.5 Gyrs for semi-major axes larger than 500 au, because of a very slow differential precession. Conclusions: Even if it is characterised by very long timescales, the inert Oort cloud is much less inert than it appears. Orbits can be considered inert over 4.5 Gyrs only in small portions of the space of orbital elements, which include (90377) Sedna and 2012VP113. Effects of the galactic tides are discernible down to semi-major axes of about 500 au. We advocate including the galactic tides in simulations of distant trans-Neptunian objects, especially when studying the formation of detached bodies or the clustering of orbital elements.
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturns disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1- 2 keV) X-ray observation of Earths aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles. This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا