Do you want to publish a course? Click here

Two-mode squeezing operator in circuit QED

95   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically investigate the implementation of the two-mode squeezing operator in circuit quantum electrodynamics. Inspired by a previous scheme for optical cavities [Phys. Rev. A $textbf{73}$, 043803(2006)], we employ a superconducting qubit coupled to two nondegenerate quantum modes and use a driving field on the qubit to adequately control the resonator-qubit interaction. Based on the generation of two-mode squeezed vacuum states, firstly we analyze the validity of our model in the ideal situation and then we investigate the influence of the dissipation mechanisms on the generation of the two-mode squeezing operation, namely the qubit and resonator mode decays and qubit dephasing. We show that our scheme allows the generation of highly squeezed states even with the state-of-the-art parameters, leading to a theoretical prediction of more than 10 dB of two-mode squeezing. Furthermore, our protocol is able to squeeze an arbitrary initial state of the resonators, which makes our scheme attractive for future applications in continuous-variable quantum information processing and quantum metrology in the realm of circuit quantum electrodynamics.



rate research

Read More

We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.
Photonic states of superconducting microwave cavities controlled by transmon ancillas provide a platform for encoding and manipulating quantum information. A key challenge in scaling up the platform is the requirement to communicate on demand the information between the cavities. It has been recently demonstrated that a tunable bilinear interaction between two cavities can be realized by coupling them to a bichromatically-driven transmon ancilla, which allows swapping and interfering the multi-photon states of the cavities [Gao et al., Phys. Rev. X 8, 021073(2018)]. Here, we explore both theoretically and experimentally the regime of relatively strong drives on the ancilla needed to achieve fast SWAP gates but which can also lead to undesired non-perturbative effects that lower the SWAP fidelity. We develop a theoretical formalism based on linear response theory that allows one to calculate the rate of ancilla-induced interaction, decay and frequency shift of the cavities in terms of a susceptibility matrix. We treat the drives non-perturbatively using Floquet theory, and find that the interference of the two drives can strongly alter the system dynamics even in the regime where the rotating wave approximation applies. We identify two major sources of infidelity due to ancilla decoherence. i) Ancilla dissipation and dephasing leads to incoherent hopping among Floquet states which occurs even when the ancilla is at zero temperature, resulting in a sudden change of the SWAP rate. ii) The cavities inherit finite decay from the relatively lossy ancilla through the inverse Purcell effect; the effect can be enhanced when the drive-induced AC Stark shift pushes certain ancilla transition frequencies to the vicinity of the cavity frequencies. The theoretical predictions agree quantitatively with the experimental results, paving the way for using the theory to design future experiments.
99 - F. Gao , Y.X. Wang , H.Y. Fan 2015
By virtue of the integration method within P-ordered product of operators and the property of entangled state representation, we reveal new physical interpretation of the generalized two-mode squeezing operator (GTSO), and find it be decomposed as the product of free-space propagation operator, single-mode and two-mode squeezing operators, as well as thin lens transformation operator. This docomposition is useful to design of opticl devices for generating various squeezed states of light. Transformation of entangled state representation induced by GTSO is emphasized.
We study the effect of homodyne detector visibility on the measurement of quadrature squeezing for a spatially multi-mode source of two-mode squeezed light. Sources like optical parametric oscillators (OPO) typically produce squeezing in a single spatial mode because the nonlinear medium is within a mode-selective optical cavity. For such a source, imperfect interference visibility in the homodyne detector couples in additional vacuum noise, which can be accounted for by introducing an equivalent loss term. In a free-space multi-spatial-mode system imperfect homodyne detector visibility can couple in uncorrelated squeezed modes, and hence can cause faster degradation of the measured squeezing. We show experimentally the dependence of the measured squeezing level on the visibility of homodyne detectors used to probe two-mode squeezed states produced by a free space four-wave mixing process in 85Rb vapor, and also demonstrate that a simple theoretical model agrees closely with the experimental data.
175 - A. Frisk Kockum , L. Tornberg , 2012
We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to dephasing, we show that this can be perfectly undone provided that the measurement signal is fully accounted for. This result improves upon that of Phys. Rev. A, 82, 012329 (2010), showing that the method suggested can be made to realize a perfect two-qubit parity measurement. We propose a benchmarking experiment on a single qubit to demonstrate the method using homodyne detection. By analyzing the limited measurement efficiency of the detector and bandwidth of the amplifier, we show that the parameter values necessary to see the effect are within the limits of existing technology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا