Do you want to publish a course? Click here

Binary companions of evolved stars in APOGEE DR14: Search method and catalog of ~5,000 companions

156   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multi-epoch radial velocity measurements of stars can be used to identify stellar, sub-stellar, and planetary-mass companions. Even a small number of observation epochs can be informative about companions, though there can be multiple qualitatively different orbital solutions that fit the data. We have custom-built a Monte Carlo sampler (The Joker) that delivers reliable (and often highly multi-modal) posterior samplings for companion orbital parameters given sparse radial-velocity data. Here we use The Joker to perform a search for companions to 96,231 red-giant stars observed in the APOGEE survey (DR14) with $geq 3$ spectroscopic epochs. We select stars with probable companions by making a cut on our posterior belief about the amplitude of the stellar radial-velocity variation induced by the orbit. We provide (1) a catalog of 320 companions for which the stellar companion properties can be confidently determined, (2) a catalog of 4,898 stars that likely have companions, but would require more observations to uniquely determine the orbital properties, and (3) posterior samplings for the full orbital parameters for all stars in the parent sample. We show the characteristics of systems with confidently determined companion properties and highlight interesting systems with candidate compact object companions.



rate research

Read More

Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.
Many problems in contemporary astrophysics---from understanding the formation of black holes to untangling the chemical evolution of galaxies---rely on knowledge about binary stars. This, in turn, depends on discovery and characterization of binary companions for large numbers of different kinds of stars in different chemical and dynamical environments. Current stellar spectroscopic surveys observe hundreds of thousands to millions of stars with (typically) few observational epochs, which allows binary discovery but makes orbital characterization challenging. We use a custom Monte Carlo sampler (The Joker) to perform discovery and characterization of binary systems through radial-velocities, in the regime of sparse, noisy, and poorly sampled multi-epoch data. We use it to generate posterior samplings in Keplerian parameters for 232,531 sources released in APOGEE Data Release 16. Our final catalog contains 19,635 high-confidence close-binary (P < few years, a < few AU) systems that show interesting relationships between binary occurrence rate and location in the color-magnitude diagram. We find notable faint companions at high masses (black-hole candidates), at low masses (substellar candidates), and at very close separations (mass-transfer candidates). We also use the posterior samplings in a (toy) hierarchical inference to measure the long-period binary-star eccentricity distribution. We release the full set of posterior samplings for the entire parent sample of 232,531 stars. This set of samplings involves no heuristic discovery threshold and therefore can be used for myriad statistical purposes, including hierarchical inferences about binary-star populations and sub-threshold searches.
We report the detections of substellar companions orbiting around seven evolved intermediate-mass stars from precise Doppler measurements at Okayama Astrophysical Observatory. o UMa (G4 II-III) is a giant with a mass of 3.1 M_sun and hosts a planet with minimum mass of m_2sini=4.1 M_J in an orbit with a period P=1630 d and an eccentricity e=0.13. This is the first planet candidate (< 13 M_J) ever discovered around stars more massive than 3 M_sun. o CrB (K0 III) is a 2.1 M_sun giant and has a planet of m_2sini=1.5 M_J in a 187.8 d orbit with e=0.19. This is one of the least massive planets ever discovered around ~2 M_sun stars. HD 5608 (K0 IV) is an 1.6 M_sun subgiant hosting a planet of m_2sini=1.4 M_J in a 793 d orbit with e=0.19. The star also exhibits a linear velocity trend suggesting the existence of an outer, more massive companion. 75 Cet (G3 III:) is a 2.5 M_sun giant hosting a planet of m_2sini=3.0 M_J in a 692 d orbit with e=0.12. The star also shows possible additional periodicity of about 200 d and 1880 d with velocity amplitude of ~7--10 m/s, although these are not significant at this stage. nu Oph (K0 III) is a 3.0 M_sun giant and has two brown-dwarf companions of m_2sini= 24 M_J and 27 M_J, in orbits with P=530.3 d and 3190 d, and e=0.126 and 0.17, respectively, which were independently announced by Quirrenbach et al. (2011). The ratio of the periods is close to 1:6, suggesting that the companions are in mean motion resonance. We also independently confirmed planets around k CrB (K0 III-IV) and HD 210702 (K1 IV), which had been announced by Johnson et al. (2008) and Johnson et al. (2007a), respectively. All of the orbital parameters we obtained are consistent with the previous results.
137 - C.S. Kochanek 2017
Supernovae (SNe) should both frequently have a binary companion at death and form significant amounts of dust. This implies that any binary companion must lie at the center of an expanding dust cloud and the variable obscuration of the companion as the SN remnant (SNR) expands will both unambiguously mark the companion and allow the measurement of the dust content through absorption rather than emission for decades after the explosion. However, sufficiently hot and luminous companions can suppress dust formation by rapidly photo-ionizing the condensible species in the ejecta. This provides a means of reconciling the Type IIb SNe Cas A, which lacks a luminous companion and formed a significant amount of dust (Md > 0.1 Msun), with the Type IIb SNe 1993J and 2011dh, both of which appear to have a luminous companion and to have formed a negligible amount of dust (Md < 0.001 Msun). The Crab and SN 1987A are consistent with this picture, as both lack a luminous companion and formed significant amounts of dust. An unrecognized dependence of dust formation on the properties of binary companions may help to explain why the evidence for dust formation in SNe appears so contradictory.
Multiplicity is a fundamental property that is set early during stellar lifetimes, and it is a stringent probe of the physics of star formation. The distribution of close companions around young stars is still poorly constrained by observations. We present an analysis of stellar multiplicity derived from APOGEE-2 spectra obtained in targeted observations of nearby star-forming regions. This is the largest homogeneously observed sample of high-resolution spectra of young stars. We developed an autonomous method to identify double lined spectroscopic binaries (SB2s). Out of 5007 sources spanning the mass range of $sim$0.05--1.5 msun, we find 399 binaries, including both RV variables and SB2s. The mass ratio distribution of SB2s is consistent with a uniform for $q<0.95$ with an excess of twins with $q>0.95$. The period distribution is consistent with what has been observed in close binaries ($<10$ AU) in the evolved populations. Three systems are found to have $qsim$0.1, with a companion located within the brown dwarf desert. There are not any strong trends in the multiplicity fraction (MF) as a function of cluster age from 1 to 100 Myr. There is a weak dependence on stellar density, with companions being most numerous at $Sigma_*sim30$ stars/pc$^{-2}$, and decreasing in more diffuse regions. Finally, disk-bearing sources are deficient in SB2s (but not RV variables) by a factor of $sim$2; this deficit is recovered by the systems without disks. This may indicate a quick dispersal of disk material in short-period equal mass systems that is less effective in binaries with lower $q$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا