Do you want to publish a course? Click here

Polymer-based black phosphorus (bP) hybrid materials by in situ radical polymerization: an effective tool to exfoliate bP and stabilize bP nanoflakes

62   0   0.0 ( 0 )
 Added by Stefan Heun
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) towards both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: i) the mixing of conventionally liquid-phase exfoliated bP (in DMSO) with PMMA solution; ii) the direct exfoliation of bP in a polymeric solution; iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn-MMA by sonication-assisted liquid phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of bPn results particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-Solid State NMR studies) and are particularly stable to air and UV light exposure.



rate research

Read More

Van der Waals (vdW) heterostructures constructed with two-dimensional (2D) materials have attracted great interests, due to their fascinating properties and potential for novel applications. While earlier efforts have advanced the understanding of the ultrafast cross-layer charge transfer process in 2D heterostructures, mechanisms for the interfacial photocarrier recombination remain, to a large extent, unclear. Here, we investigate a heterostructure comprised of black phosphorus (BP) and molybdenum disulfide (MoS2), with a type-II band alignment. Interestingly, it is found that the photo-generated electrons in MoS2 (transferred from BP) exhibit an ultrafast lifetime of about 5 ps, significantly shorter than those of the constituent materials. By corroborating with the relaxation of photo-excited holes in BP, it is revealed that the ultrafast time constant is as a result of efficient Langevin recombination, where the high hole mobility of BP facilitates a large recombination coefficient (approximately 2x10^-10 m^2/s). In addition, broadband transient absorption spectroscopy confirms that the hot electrons transferred to MoS2 distribute over a broad energy range following an ultrafast thermalization. The rate of the interlayer Langevin recombination is found to exhibit no energy level dependence. Our findings provide essential insights into the fundamental photo-physics in type-II 2D heterostructures, and also provide useful guidelines for customizing photocarrier lifetimes of BP for high-speed photo-sensitive devices.
Artificial semiconductor heterostructures played a pivotal role in modern electronic and photonic technologies, providing a highly effective mean for the manipulation and control of carriers, from the visible to the Terahertz (THz) frequency range. Despite the exceptional versatility, they commonly require challenging epitaxial growth procedures due to the need of clean and abrupt interfaces, which proved to be a major obstacle for the realization of room-temperature (RT), high-efficiency devices, like source, detectors or modulators, especially in the far-infrared. Two-dimensional (2D) layered materials, like graphene and phosphorene, recently emerged as a reliable, flexible and versatile alternative for devising efficient RT detectors operating at Terahertz frequencies. We here combine the benefit of the heterostructure architecture with the exceptional technological potential of 2D layered nanomaterials; by reassembling the thin isolated atomic planes of hexagonal borum nitride (hBN) with a few layer phosphorene (black phosphorus (BP)) we mechanically stacked hBN/BP/hBN heterostructures to devise high-efficiency THz photodetectors operating in the 0.3-0.65 THz range from 4K to 300K with a record SNR=20000.
The Survey Propagation (SP) algorithm for solving $k$-SAT problems has been shown recently as an instance of the Belief Propagation (BP) algorithm. In this paper, we show that for general constraint-satisfaction problems, SP may not be reducible from BP. We also establish the conditions under which such a reduction is possible. Along our development, we present a unification of the existing SP algorithms in terms of a probabilistically interpretable iterative procedure -- weighted Probabilistic Token Passing.
Recent reported very high thermal conductivities in the cubic boron arsenide (BAs) and boron phosphide (BP) crystals could potentially provide a revolutionary solution in the thermal management of high power density devices. To fully facilitate such application, compatible coefficient of thermal expansion (CTE) between the heat spreader and device substrate, in order to minimize the thermal stress, need to be considered. Here we report our experimental CTE studies of BAs and BP in the temperature range from 100K to 1150K, through a combination of X-ray single crystal diffraction and neutron powder diffraction. We demonstrated the room temperature CTE, 3.6 $pm$ 0.15 $times$ 10E-6 /K for BAs and 3.2 $pm$ 0.2 $times$ 10E-6 /K for BP, are more compatible with most of the semiconductors including Si and GaAs, in comparison with diamond, and thus could be better candidates for the future heat spreader materials in power electronic devices.
158 - S. Turcotte 2003
Ap/Bp stars are magnetic chemically peculiar early A and late B type stars of the main sequence. They exhibit peculiar surface abundance anomalies that are thought to be the result of gravitational settling and radiative levitation. The physics of diffusion in these stars are reviewed briefly and some model predictions are discussed. While models reproduce some observations reasonably well, more work is needed before the behavior of diffusing elements in a complex magnetic field is fully understood.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا