No Arabic abstract
A method to generate the optical vortex beam with arbitrary superposition of different orders of orbital angular momentum (OAM) on a photonic chip is proposed. The distributed Fourier holographic gratings are proposed to convert the propagating wave in waveguides to a vortex beam in the free space, and the components of different OAMs can be controlled by the amplitude and phases of on-chip incident light based on the principle of Fourier transformation. As an example, we studied a typical device composed of nine Fourier holographic gratings on fan-shaped waveguides. By scalar diffraction calculation, the OAM of the optical beam from the reconfigurable vortex beam generator can be controlled on-demand from -2nd to 2nd by adjusting the phase of input light fields, which is demonstrated numerically with the fidelity of generated optical vortex beam above 0.69. The working bandwidth of the Fourier holographic grating is about 80 nm with a fidelity above 0.6. Our work provides an feasible method to manipulate the vortex beam or detect arbitrary superposition of OAMs, which can be used in integrated photonics structures for optical trapping, signal processing, and imaging.
A new method to generate and control the amplitude and phase distributions of a optical vortex beam is proposed. By introducing a holographic grating on top of the dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be converted to each other. This microscale holographic grating is very robust against the variation of geometry parameters. The designed vortex beam generator can produce the target beam with a fidelity up to 0.93, and the working bandwidth is about 175 nm with the fidelity larger than 0.80. In addition, a multiple generator composed of two holographic gratings on two parallel waveguides are studied, which can perform an effective and flexible modulation on the vortex beam by controlling the phase of the input light. Our work opens a new avenue towards the integrated OAM devices with multiple degrees of optical freedom, which can be used for optical tweezers, micronano imaging, information processing, and so on.
Fractional vortex beams (FVBs) with non-integer topological charges attract much attention due to unique features of propagations, but there still exist different viewpoints on the change of their total vortex strength. Here we have experimentally demonstrated the distribution and number of vortices contained in FVBs at Fraunhofer diffraction region. We have verified that the jumps of total vortex strength for FVBs happens only when non-integer topological charge is before and after (but very close to) any even integer number, which originates from two different mechanisms for generation and movement of vortices on focal plane. Meanwhile, we have also measured the beam propagation factor (BPF) of such FVBs, and have found that their BPF values almost increase linearly in one component and oscillate increasingly in another component. Our experimental results are in good agreement with numerical results.
Fourier back plane (FBP) imaging technique has been widely used in the frontier research of nanophotonics. In this paper, based on the diffraction theory and wave front transformation principle, the FBP imaging basic principle, the setup realization and the applications in frontier research are introduced. The paper beginnings with the primary knowledge of Fourier optics, combining with the modern microscope structure to help to understand the Fourier transformation principle in the advances of nanophotonics. It can be a reference for experimental teaching and researching.
The rapidly maturing integrated Kerr microcombs show significant potential for microwave photonics. Yet, state-of-the-art microcomb based radiofrequency (RF) filters have required programmable pulse shapers, which inevitably increase the system cost, footprint, and complexity. Here, by leveraging the smooth spectral envelope of single solitons, we demonstrate for the first time microcomb based RF filters free from any additional pulse shaping. More importantly, we achieve all-optical reconfiguration of the RF filters by exploiting the intrinsically rich soliton configurations. Specifically, we harness the perfect soliton crystals to multiply the comb spacing thereby dividing the filter passband frequencies. Also, a completely novel approach based on the versatile interference patterns of two solitons within one round-trip, enables wide reconfigurability of RF passband frequencies according to their relative azimuthal angles. The proposed schemes demand neither an interferometric setup nor another pulse shaper for filter reconfiguration, providing a practical route towards chip-scale, widely reconfigurable microcomb based RF filters.
We study the properties of the Fraunhofer diffraction patterns produced by Gaussian beams crossing spiral phase plates. We show, both analytically and numerically, that off-axis displacements of the input beam produce asymmetric diffraction patterns. The intensity profile along the direction of maximum asymmetry shows two different peaks. We find that the intensity ratio between these two peaks decreases exponentially with the off-axis displacement of the incident beam, the decay being steeper for higher strengths of the optical singularity of the spiral phase plate. We analyze how this intensity ratio can be used to measure small misalignments of the input beam with a very high precision.