Do you want to publish a course? Click here

Constraining the Polarization Content of Gravitational Waves with Astrometry

116   0   0.0 ( 0 )
 Added by Neil J. Cornish
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational waves perturb the paths of photons, impacting both the time-of-flight and the arrival direction of light from stars. Pulsar timing arrays can detect gravitational waves by measuring the variations in the time of flight of radio pulses, while astrometry missions such as Gaia can detect gravitational waves from the time-varying changes in the apparent position of a field of stars. Just as gravitational waves impart a characteristic correlation pattern in the arrival times of pulses from pulsars at different sky locations, the deflection of starlight is similarly correlated across the sky. Here we compute the astrometric correlation patterns for the full range of polarization states found in alternative theories of gravity, and decompose the sky-averaged correlation patterns into vector spherical harmonics. We find that the tensor and vector polarization states produce equal power in the electric- and magnetic-type vector spherical harmonics, while the scalar modes produce only electric-type correlations. Any difference in the measured electric and magnetic-type correlations would represent a clear violation of Einstein gravity. The angular correlations functions for the vector and scalar longitudinal modes show the same enhanced response at small angular separations that is familiar from pulsar timing.



rate research

Read More

Pulsar timing arrays are sensitive to gravitational wave perturbations produced by individual supermassive black hole binaries during their early inspiral phase. Modified gravity theories allow for the emission of gravitational dipole radiation, which is enhanced relative to the quadrupole contribution for low orbital velocities, making the early inspiral an ideal regime to test for the presence of modified gravity effects. Using a theory-agnostic description of modified gravity theories based on the parametrized post-Einsteinian framework, we explore the possibility of detecting deviations from General Relativity using simulated pulsar timing array data, and provide forecasts for the constraints that can be achieved. We generalize the {tt enterprise} pulsar timing software to account for possible additional polarization states and modifications to the phase evolution, and study how accurately the parameters of simulated signals can be recovered. We find that while a pure dipole model can partially recover a pure quadrupole signal, there is little possibility for confusion when the full model with all polarization states is used. With no signal present, and using noise levels comparable to those seen in contemporary arrays, we produce forecasts for the upper limits that can be placed on the amplitudes of alternative polarization modes as a function of the sky location of the source.
We propose a generic, phenomenological approach to modifying the dispersion of gravitational waves, independent of corrections to the generation mechanism. This model-independent approach encapsulates all previously proposed parametrizations, including Lorentz violation in the Standard-Model Extension, and provides a roadmap for additional theories. Furthermore, we present a general approach to include modulations to the gravitational-wave polarization content. The framework developed here can be implemented in existing data analysis pipelines for future gravitational-wave observation runs.
We point out that the observed time delay between the detection of the signal at the Hanford and Livingston LIGO sites from the gravitational wave event GW150914 places an upper bound on the speed of propagation of gravitational waves, $c_{gw}lesssim 1.7$ in the units of speed of light. Combined with the lower bound from the absence of gravitational Cherenkov losses by cosmic rays that rules out most of subluminal velocities, this gives a model-independent double-sided constraint $1lesssim c_{gw}lesssim 1.7$. We compare this result to model-specific constraints from pulsar timing and cosmology.
In general relativity (GR), gravitational waves (GWs) propagate the well-known plus and cross polarization modes which are the signature of a massless spin-2 field. However, diffraction of GWs caused by intervening objects along the line of sight can cause the apparent rise of additional polarizations due to GW-curvature interactions. In this paper, we continue the analysis by two of the authors of the present article, on lensing of gravitational waves beyond geometric optics. In particular, we calculate the lensing effect caused by a point-like lens, in the regime where its Schwarzschild radius $R_s$ is much smaller than the wavelength $lambda$ of the signal, itself smaller than the impact parameter $b$. In this case, the curvature of spacetime induces distortions in the polarization of the wave such that effective scalar and vector polarizations may appear. We find that the amplitude of these apparent non-GR polarizations is suppressed by a factor $R_slambda/b^2$ with respect to the amplitude of the GR-like tensor modes. We estimate the probability to develop these extra polarization modes for a nearly monochromatic GW in the Pulsar Timing Arrays band traveling through a distribution of galaxies.
Gravitational waves in general relativity contain two polarization degrees of freedom, commonly labeled plus and cross. Besides those two tensor modes, generic theories of gravity predict up to four additional polarization modes: two scalar and two vector. Detection of nontensorial modes in gravitational wave data would constitute a clean signature of physics beyond general relativity. Previous measurements have pointed to the unambiguous presence of tensor modes in gravitational waves, but the presence of additional generic nontensorial modes has not been directly tested. We propose a model-independent analysis capable of detecting and characterizing mixed tensor and nontensor components in transient gravitational wave signals, including those from compact binary coalescences. This infrastructure can constrain the presence of scalar or vector polarization modes on top of the tensor modes predicted by general relativity. Our analysis is morphology-independent (as it does not rely on a waveform templates), phase-coherent, and agnostic about the source sky location. We apply our analysis to data from GW190521 and simulated data and demonstrate that it is capable of placing upper limits on the strength of nontensorial modes when none are present, or characterizing their morphology in the case of a positive detection. Tests of the polarization content of a transient gravitational wave signal hinge on an extended detector network, wherein each detector observes a different linear combination of polarization modes. We therefore anticipate that our analysis will yield precise polarization constraints in the coming years, as the current ground-based detectors LIGO Hanford, LIGO Livingston, and Virgo are joined by KAGRA and LIGO India.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا