Do you want to publish a course? Click here

A universal description of III-V/Si epitaxial growth processes

220   0   0.0 ( 0 )
 Added by Charles Cornet
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here, we experimentally and theoretically clarify III-V/Si crystal growth processes. Atomically-resolved microscopy shows that mono-domain 3D islands are observed at the early stages of AlSb, AlN and GaP epitaxy on Si, independently of misfit. It is also shown that complete III-V/Si wetting cannot be achieved in most III-V/Si systems. Surface/interface contributions to the free energy variations are found to be prominent over strain relief processes. We finally propose a general and unified description of III-V/Si growth processes, including the description of antiphase boundaries formation.



rate research

Read More

323 - P. Kratzer , E. Penev , 2001
We demonstrate how first-principles calculations using density-functional theory (DFT) can be applied to gain insight into the molecular processes that rule the physics of materials processing. Specifically, we study the molecular beam epitaxy (MBE) of arsenic compound semiconductors. For homoepitaxy of GaAs on GaAs(001), a growth model is presented that builds on results of DFT calculations for molecular processes on the beta2-reconstructed GaAs(001) surface, including adsorption, desorption, surface diffusion and nucleation. Kinetic Monte Carlo simulations on the basis of the calculated energetics enable us to model MBE growth of GaAs from beams of Ga and As_2 in atomistic detail. The simulations show that island nucleation is controlled by the reaction of As_2 molecules with Ga adatoms on the surface. The analysis reveals that the scaling laws of standard nucleation theory for the island density as a function of growth temperature are not applicable to GaAs epitaxy. We also discuss heteroepitaxy of InAs on GaAs(001), and report first-principles DFT calculations for In diffusion on the strained GaAs substrate. In particular we address the effect of heteroepitaxial strain on the growth kinetics of coherently strained InAs islands. The strain field around an island is found to cause a slowing-down of material transport from the substrate towards the island and thus helps to achieve more homogeneous island sizes.
We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100$^{circ}$C to 350$^{circ}$C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 $Omega$cm$^2$ for samples bonded at 200$^{circ}$C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga$_{0.5}$In$_{0.5}$P/Si tandem solar cells operating at one sun or low concentration conditions.
Atomically sharp epitaxial growth of Bi2Se3 films is achieved on Si (111) substrate with MBE (Molecular Beam Epitaxy). Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi2Se3 films on Si substrates. With a single-step high temperature growth, second phase clusters are formed at an early stage. On the other hand, with low temperature growth, the film tends to be disordered even in the absence of a second phase. With a low temperature initial growth followed by a high temperature growth, second-phase-free atomically sharp interface is obtained between Bi2Se3 and Si substrate, as verified by RHEED (Reflection High Energy Electron Diffraction), TEM (Transmission Electron Microscopy) and XRD (X-Ray Diffraction). The lattice constant of Bi2Se3 is observed to relax to its bulk value during the first quintuple layer according to RHEED analysis, implying the absence of strain from the substrate. TEM shows a fully epitaxial structure of Bi2Se3 film down to the first quintuple layer without any second phase or an amorphous layer.
A discussion of epitaxial growth is presented for those situations (OMVPE, CBE, ALE, MOMBE, GSMBE, etc.) when the kinetics of surface processes associated with molecular precursors may be rate limiting. Emphasis is placed on the identification of various {it characteristic length scales} associated with the surface processes. Study of the relative magnitudes of these lengths permits one to identify regimes of qualitatively different growth kinetics as a function of temperature and deposition flux. The approach is illustrated with a simple model which takes account of deposition, diffusion, desorption, dissociation, and step incorporation of a single precursor species, as well as the usual processes of atomic diffusion and step incorporation. Experimental implications are discussed in some detail.
Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based silicene was realized by molecular beam epitaxy (MBE) growth1,2. Ge-based germanene was realized by mechanical exfoliation3. Sn-based stanene has its unique properties. Stanene and its derivatives can be 2D topological insulators (TI) with a very large band gap as proposed by first-principles calculations4, or can support enhanced thermoelectric performance5, topological superconductivity6 and the near-room-temperature quantum anomalous Hall (QAH) effect7. For the first time, in this work, we report a successful fabrication of 2D stanene by MBE. The atomic and electronic structures were determined by scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) in combination with first-principles calculations. This work will stimulate the experimental study and exploring the future application of stanene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا