Do you want to publish a course? Click here

Computing the dipole polarizability of 48Ca with increased precision

222   0   0.0 ( 0 )
 Added by Sonia Bacca
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We compute the electric dipole polarizability of 48Ca with an increased precision by including more correlations than in previous studies. Employing the coupled-cluster method we go beyond singles and doubles excitations and include leading-order three-particle-three-hole (3p-3h) excitations for the ground state, excited states, and the similarity transformed operator. We study electromagnetic sum rules, such as the bremsstrahlung sum rule m_0 and the polarizability sum rule alpha_D using interactions from chiral effective field theory. To gauge the quality of our coupled-cluster approximations we perform several benchmarks with the effective interaction hyperspherical harmonics approach in 4He and with self consistent Greens function in 16O. We compute the dipole polarizability of 48Ca employing the chiral interaction N2LOsat [Ekstroem et al., Phys. Rev. C 91, 051301 (2015)] and the 1.8/2.0 (EM) [Hebeler et al., Phys. Rev. C 83, 031301 (2011)]. We find that the effect of 3p-3h excitations in the ground state is small for 1.8/2.0 (EM) but non-negligible for N2LOsat. The addition of these new correlations allows us to improve the precision of our 48Ca calculations and reconcile the recently reported discrepancy between coupled-cluster results based on these interactions and the experimentally determined alpha_D from proton inelastic scattering in 48Ca [Birkhan et al., Phys. Rev. Lett. 118, 252501 (2017)]. For the computation of electromagnetic and polarizability sum rules, the inclusion of leading-order 3p-3h excitations in the ground state is important, while less so for the excited states and the similarity-transformed dipole operator.



rate research

Read More

A simple analytical expression for the electric dipole polarizability of the three-hadron bound system having only one stable bound state has been derived neglecting by the higher orbital components of the off-shell three-body transition matrix at the energy of the bound state. As a case in point, we have estimated the electric dipole polarizability of the triton, using a cluster triton wave function and the Hulthen potential to describe the related p-n and n-d bound states.
The cesium 6S_1/2 scalar dipole polarizability alpha_0 has been determined from the time-of-flight of laser cooled and launched cesium atoms traveling through an electric field. We find alpha_0 = 6.611+-0.009 x 10^-39 C m^2/V= 59.42+-0.08 x 10^-24 cm^3 = 401.0+-0.6 a_0^3. The 0.14% uncertainty is a factor of fourteen improvement over the previous measurement. Values for the 6P_1/2 and 6P_3/2 lifetimes and the 6S_1/2 cesium-cesium dispersion coefficient C_6 are determined from alpha_0 using the procedure of Derevianko and Porsev [Phys. Rev. A 65, 053403 (2002)].
113 - V. Derya , D. Savran , J. Endres 2014
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (alpha,alphagamma) experiment at E_{alpha}=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
We present the first laser spectroscopic measurement of the neutron-rich nucleus $^{68}$Ni at the mbox{$N=40$} subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability $alpha_{rm D}$ has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus $^{48}$Ca. Three-particle--three-hole correlations in coupled-cluster theory substantially improve the description of the experimental data, which allows to constrain the neutron radius and neutron skin of $^{68}$Ni.
90 - S. Bassauer 2020
The dipole polarizability of stable even-mass tin isotopes 112,114,116,118,120,124 was extracted from inelastic proton scattering experiments at 295 MeV under very forward angles performed at RCNP. Predictions from energy density functionals cannot account for the present data and the polarizability of 208Pb simultaneously. The evolution of the polarizabilities in neighboring isotopes indicates a kink at 120Sn while all model results show a nearly linear increase with mass number after inclusion of pairing corrections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا