No Arabic abstract
Photoionization fronts play a dominant role in many astrophysical situations, but remain difficult to achieve in a laboratory experiment. We present the results from a computational parameter study evaluating the feasibility of the photoionization experiment presented in the design paper by Drake, R. P., Hazak, G., Keiter, P. A., Davis, J. S., Patterson, C. R., Frank, A., Blackman, E. G., & Busquet, M. 2016, ApJ, 833, 249 in which a photoionization front is generated in a nitrogen medium . The nitrogen gas density and the Planckian radiation temperature of the x-ray source define each simulation. Simulations modeled experiments in which the x-ray flux is generated by a laser-heated gold foil, suitable for experiments using many kJ of laser energy, and experiments in which the flux is generated by a z-pinch device, which implodes a cylindrical shell of conducting wires. The models are run using CRASH, our block-adaptive-mesh code for multi-material radiation hydrodynamics. The radiative transfer model uses multi-group, flux-limited diffusion with thirty radiation groups. In addition, electron heat conduction is modeled using a single-group, flux-limited diffusion. In the theory, a photoionization front can exist only when the ratios of the electron recombination rate to the photoionization rate and the electron impact ionization rate to the recombination rate lie in certain ranges. These ratios are computed for several ionization states of nitrogen. Photoionization fronts are found to exist for laser driven models with moderate nitrogen densities ($sim$10$^{21}$ cm$^{-3}$) and radiation temperatures above 90 eV. For z-pinch driven models, lower nitrogen densities are preferred ($<$10$^{21}$ cm$^{-3}$). We conclude that the proposed experiments are likely to generate photoionization fronts.
Photoionization fronts play a dominant role in many astrophysical environments, but remain difficult to achieve in a laboratory experiment. Recent papers have suggested that experiments using a nitrogen medium held at ten atmospheres of pressure that is irradiated by a source with a radiation temperature of T$_{rm R}sim$ 100 eV can produce viable photoionization fronts. We present a suite of one-dimensional numerical simulations using the helios multi-material radiation hydrodynamics code that models these conditions and the formation of a photoionization front. We study the effects of varying the atomic kinetics and radiative transfer model on the hydrodynamics and ionization state of the nitrogen gas, finding that more sophisticated physics, in particular a multi-angle long characteristic radiative transfer model and a collisional-radiative atomics model, dramatically changes the atomic kinetic evolution of the gas. A photoionization front is identified by computing the ratios between the photoionization rate, the electron impact ionization rate, and the total recombination rate. We find that due to the increased electron temperatures found using more advanced physics that photoionization fronts are likely to form in our nominal model. We report results of several parameter studies. In one of these, the nitrogen pressure is fixed at ten atmospheres and varies the source radiation temperature while another fixes the temperature at 100 eV and varied the nitrogen pressure. Lower nitrogen pressures increase the likelihood of generating a photoionization front while varying the peak source temperature has little effect.
Cold Fronts and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and cold fronts in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyrs and it could generate a particular pattern of multiple cold fronts and shocks.
We investigate models for the photoionization of the widespread diffuse ionized gas in galaxies. In particular we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium have low density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find ionizing fluxes throughout our simulation grids are larger than predicted by one dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Halpha. In previous studies of such clouds the photoionization scenario had been rejected and the Halpha had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Halpha observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high altitude diffuse ionized gas in a realistic three-dimensional interstellar medium.
Innershell ionization of a $1s$ electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD) which results as the $1s$-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for innershell photoionization of neutral atomic nitrogen for photon energies of $403-475$~eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N$^+$, N$^{2+}$, and N$^{3+}$, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to N$^{2+}$ is somewhat reduced, that for N$^+$ is greatly increased, and that to N$^{3+}$, which was predicted not to be zero, grows to $approx 10%$ at the higher photon energies studied. This work demonstrates some of the shortcomings in the theoretical CSD data base for innershell ionization and points the way for the improvements needed to more reliably model the role of innershell ionization of cosmic plasmas.
A primary goal of integral field spectroscopic (IFS) surveys is to provide a statistical census of galaxies classified by their internal kinematics. As a result, the observational spin parameter, $lambda_R$, has become one of the most popular methods of quantifying the relative importance of velocity dispersion and rotation in supporting a galaxys inner structure. The goal of this paper is to examine the relationship between the observationally deduced $lambda_R$ and one of the most commonly used theoretical spin parameters in the literature, the Bullock et al. (2001) $lambda$. Using a set of $N$-body realisations of galaxies from which we construct mock IFS observations, we measure $lambda_R$ as an observer would, incorporating the effects of beam smearing and seeing conditions. Assuming parameters typical of current IFS surveys, we confirm that there are strong positive correlations between $lambda_R$ and measurement radius, and strong negative correlations between $lambda_R$ and size of the PSF, for late-type galaxies; these biases can be reduced using a recently proposed empirical correction. Once observational biases are corrected for, we find that $lambda_R$ provides a good approximation to $sim sqrt{3}/2 ; lambda(rm R_{rm eff})$, where $lambda$ is evaluated for the galactic stellar component within 1 R$_{rm eff}$.