No Arabic abstract
We investigate models for the photoionization of the widespread diffuse ionized gas in galaxies. In particular we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium have low density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find ionizing fluxes throughout our simulation grids are larger than predicted by one dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Halpha. In previous studies of such clouds the photoionization scenario had been rejected and the Halpha had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Halpha observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high altitude diffuse ionized gas in a realistic three-dimensional interstellar medium.
It is shown that a number of key observations of the Galactic ISM can be understood, if it is treated as a highly compressible and turbulent medium energized predominantly by supernova explosions (and stellar winds). We have performed extensive numerical high resolution 3D hydrodynamical and magnetohydrodynamical simulations with adaptive mesh refinement over sufficiently long time scales to erase memory effects of the initial setup. Our results show, in good agrement with observations, that (i) volume filling factors of the hot medium are modest (typically below 20%), (ii) global pressure is far from uniform due to supersonic (and to some extent superalfvenic) turbulence, (iii) a significant fraction of the mass (about 60%) in the warm neutral medium is in the thermally unstable regime (500 K < T < 5000 K), (iv) the average number density of OVI in absorption is 1.81 10^{-8} cm^{-3}, in excellent agreement with Copernicus and FUSE data, and its distribution is rather clumpy, consistent with its measured dispersion with distance.
To study how supernova feedback structures the turbulent interstellar medium, we construct 3D models of vertically stratified gas stirred by discrete supernova explosions, including vertical gravitational field and parametrized heating and cooling. The models reproduce many observed characteristics of the Galaxy such as global circulation of gas (i.e., galactic fountain) and the existence of cold dense clouds in the galactic disk. Global quantities of the model such as warm and hot gas filling factors in the midplane, mass fraction of thermally unstable gas, and the averaged vertical density profile are compared directly with existing observations, and shown to be broadly consistent. We find that energy injection occurs over a broad range of scales. There is no single effective driving scale, unlike the usual assumption for idealized models of incompressible turbulence. However, >90% of the total kinetic energy is contained in wavelengths shortward of 200 pc. The shape of the kinetic energy spectrum differs substantially from that of the velocity power spectrum, which implies that the velocity structure varies with the gas density. Velocity structure functions demonstrate that the phenomenological theory proposed by Boldyrev is applicable to the medium. We show that it can be misleading to predict physical properties such as the stellar initial mass function based on numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. Supernova-driven turbulence inhibits star formation globally rather than triggering it.
Context: The interstellar medium (ISM) on all scales is full of structures that can be used as tracers of processes that feed turbulence. Aims: We used HI survey data to derive global properties of the angular power distribution of the local ISM. Methods: HI4PI observations on an nside = 1024 HEALPix grid and Gaussian components representing three phases, the cold, warm, and unstable lukewarm neutral medium (CNM, WNM, and LNM), were used for velocities $|v_{mathrm{LSR}}| leq 25$ kms. For high latitudes $|b| > 20deg$ we generated apodized maps. After beam deconvolution we fitted angular power spectra. Results: Power spectra for observed column densities are exceptionally well defined and straight in log-log presentation with 3D power law indices $gamma geq -3$ for the local gas. For intermediate velocity clouds (IVCs) we derive $gamma = -2.6$ and for high velocity clouds (HVCs) $gamma = -2.0$. Single-phase power distributions for the CNM, LNM, and WNM are highly correlated and shallow with $ gamma sim -2.5$ for multipoles $l leq 100$. Excess power from cold filamentary structures is observed at larger multipoles. The steepest single-channel power spectra for the CNM are found at velocities with large CNM and low WNM phase fractions. Conclusions: The phase space distribution in the local ISM is configured by phase transitions and needs to be described with three distinct different phases, being highly correlated but having distributions with different properties. Phase transitions cause locally hierarchical structures in phase space. The CNM is structured on small scales and is restricted in position-velocity space. The LNM as an interface to the WNM envelops the CNM. It extends to larger scales than the CNM and covers a wider range of velocities. Correlations between the phases are self-similar in velocity.
Supersonic turbulence is a large reservoir of suprathermal energy in the interstellar medium. Its dissipation, because it is intermittent in space and time, can deeply modify the chemistry of the gas. We further explore a hybrid method to compute the chemical and thermal evolution of a magnetized dissipative structure, under the energetic constraints provided by the observed properties of turbulence in the cold neutral medium. For the first time, we model a random line of sight by taking into account the relative duration of the bursts with respect to the thermal and chemical relaxation timescales of the gas. The key parameter is the turbulent rate of strain a due to the ambient turbulence. With the gas density, it controls the size of the dissipative structures, therefore the strength of the burst. For a large range of rates of strain and densities, the models of turbulent dissipation regions (TDR) reproduce the CH+ column densities observed in the diffuse medium and their correlation with highly excited H2. They do so without producing an excess of CH. As a natural consequence, they reproduce the abundance ratios of HCO+/OH and HCO+/H2O, and their dynamic range of about one order of magnitude observed in diffuse gas. Large C2H and CO abundances, also related to those of HCO+, are another outcome of the TDR models that compare well with observed values. The abundances and column densities computed for CN, HCN and HNC are one order of magnitude above PDR model predictions, although still significantly smaller than observed values.
We study the evolution of dense clumps and provide argument that the existence of the clumps is not limited by the crossing time of the clump. We claim that the lifetimes of the clumps are determined by the turbulent motions on larger scale and predict the correlation of the clump lifetime and its column density. We use numerical simulations and successfully test this relation. In addition, we study the morphological asymmetry and the magnetization of the clumps as a function of their masses.