No Arabic abstract
We report the discovery and the analysis of the short timescale binary-lens microlensing event, MOA-2015-BLG-337. The lens system could be a planetary system with a very low mass host, around the brown dwarf/planetary mass boundary, or a brown dwarf binary. We found two competing models that explain the observed light curves with companion/host mass ratios of q~0.01 and ~0.17, respectively. From the measurement of finite source effects in the best-fit planetary model, we find a relatively small angular Einstein radius of theta_E ~ 0.03 mas which favors a low mass lens. We conduct a Bayesian analysis to obtain the probability distribution of the lens properties. The results for the planetary models strongly depend on the minimum mass, M_min, in the assumed mass function. In summary, there are two solutions of the lens system: (1) a brown dwarf/planetary mass boundary object orbited by a super-Neptune (the planetary model with M_min=0.001 M_sun) and (2) a brown dwarf binary (the binary model). If the planetary models is correct, this system can be one of a new class of planetary system, having a low host mass and also a planetary mass ratio (q <0.03) between the host and its companion. The discovery of the event is important for the study of planetary formation in very low mass objects. In addition, it is important to consider all viable solutions in these kinds of ambiguous events in order for the future comprehensive statistical analyses of planetary/binary microlensing events.
We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010-03-18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source lightcurve, we demonstrate that it is an irregular variable over time scales >200d. Its dereddened color, $(V-I)_{S,0}$, is 1.221$pm$0.051mag and from our lens model we derive a source radius of 14.7$pm$1.3 $R_{odot}$, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q=0.0654$pm$0.0006. The Einstein crossing time of the event, $T_{rm{E}}=44.3$pm$0.1d, was sufficiently long that the lightcurve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, $D_L$=2.8$pm$0.4kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with $M_{L,p}$=0.16$pm0.03M_{odot}$ while the companion has $M_{L,s}$=11.0$pm2.0M_{rm{J}}$ putting it in the boundary zone between planets and brown dwarfs.
We present the analysis of MOA-2007-BLG-197Lb, the first brown dwarf companion to a Sun-like star detected through gravitational microlensing. The event was alerted and followed-up photometrically by a network of telescopes from the PLANET, MOA, and uFUN collaborations, and observed at high angular resolution using the NaCo instrument at the VLT. From the modelling of the microlensing light curve, we derived the binary lens separation in Einstein radius units (s~1.13) and a mass ratio of (4.732+/-0.020)x10^{-2}. Annual parallax, lens orbital motion and finite source effects were included in the models. To recover the lens systems physical parameters, we combined the resulting light curve best-fit parameters with (J,H,Ks) magnitudes obtained with VLT NaCo and calibrated using IRSF and 2MASS data. We derived a lens total mass of 0.86+/-0.04 Msun and a lens distance of 4.2+/-0.3 kpc. We find that the companion of MOA-2007-BLG-197L is a brown dwarf of 41+/-2 Mjup observed at a projected separation of 4.3+/-0.1 AU, and orbits a 0.82+/-0.04 Msun G-K dwarf star. We study the statistical properties of this population of brown dwarfs detected by microlensing, transit, radial velocity, and direct imaging (most of these objects orbit solar-type stars), and we performed a two-dimensional, non-parametric probability density distribution fit to the data, which draws a structured brown dwarf landscape. We confirm the existence of a region that is strongly depleted in objects at short periods and intermediate masses (P<30 d, M~30-60 Mjup), but also find an accumulation of objects around P~500 d and M~20 Mjup, as well as another depletion region at long orbital periods (P>500 d) and high masses (M>50 Mjup). While these data provide important clues on mechanisms of brown dwarfs formation, more data are needed to establish their relative importance, in particular as a function of host star mass.
We analyze KMT-2019-BLG-1339, a microlensing event with an obvious but incompletely resolved brief anomaly feature around the peak of the light curve. Although the origin of the anomaly is identified to be a companion to the lens with a low mass ratio $q$, the interpretation is subject to two different degeneracy types. The first type is the ambiguity in $rho$, representing the angular source radius scaled to the angular radius of the Einstein ring, $theta_{rm E}$, and the other is the $sleftrightarrow s^{-1}$ degeneracy. The former type, `finite-source degeneracy, causes ambiguities in both $s$ and $q$, while the latter induces an ambiguity only in $s$. Here $s$ denotes the separation (in units of $theta_{rm E}$) in projection between the lens components. We estimate that the lens components have masses $(M_1, M_2)sim (0.27^{+0.36}_{-0.15}~M_odot, 11^{+16}_{-7}~M_{rm J})$ and $sim (0.48^{+0.40}_{-0.28}~M_odot, 1.3^{+1.1}_{-0.7}~M_{rm J})$ according to the two solutions subject to the finite-source degeneracy, indicating that the lens comprises an M dwarf and a companion with a mass around the planet/brown dwarf boundary or a Jovian-mass planet. It is possible to lift the finite-source degeneracy by conducting future observations utilizing a high resolution instrument because the relative lens-source proper motion predicted by the solutions are widely different.
We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.
With a uniform VLT SINFONI data set of nine targets, we have developed an empirical grid of J,H,K spectra of the atmospheres of objects estimated to have very low substellar masses of sim5-20 MJup and young ages of sim1-50 Myr. Most of the targets are companions, objects which are especially valuable for comparison with atmosphere and evolutionary models, as they present rare cases in which the age is accurately known from the primary. Based on the sample youth, all objects are expected to have low surface gravity, and this study investigates the critical early phases of the evolution of substellar objects. The spectra are compared with grids of five different theoretical atmosphere models. This analysis represents the first systematic model comparison with infrared spectra of young brown dwarfs. The fits to the full JHK spectra of each object result in a range of best fit effective temperatures of +/-150-300K whether or not the full model grid or a subset restricted to lower log(g) values is used. This effective temperature range is significantly larger than the uncertainty typically assigned when using a single model grid. Fits to a single wavelength band can vary by up to 1000K using the different models. Since the overall shape of these spectra is governed more by the temperature than surface gravity, unconstrained model fits did not find matches with low surface gravity or a trend in log(g) with age. This suggests that empirical comparison with spectra of unambiguously young objects targets (such as these SINFONI data) may be the most reliable method to search for indications of low surface gravity and youth. For two targets, the SINFONI data are a second epoch and the data show no variations in morphology over time. The analysis of two other targets, AB Pic B and CT Cha B, suggests that these objects may have lower temperatures, and consequently lower masses, than previously estimated.