Do you want to publish a course? Click here

Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model

171   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The early Earths environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 {deg}C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6 (+0.6,-0.4) (2{sigma}) at 4.0 Ga to 7.0 (+0.7,-0.5) (2{sigma}) at the Archean-Proterozoic boundary, and to 7.9 (+0.1,-0.2) (2{sigma}) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.



rate research

Read More

The evolution of Earths early atmosphere and the emergence of habitable conditions on our planet are intricately coupled with the development and duration of the magma ocean phase during the early Hadean period (4 to 4.5 Ga). In this paper, we deal with the evolution of the steam atmosphere during the magma ocean period. We obtain the outgoing longwave radiation using a line-by-line radiative transfer code GARLIC. Our study suggests that an atmosphere consisting of pure H$_{2}$O, built as a result of outgassing extends the magma ocean lifetime to several million years. The thermal emission as a function of solidification timescale of magma ocean is shown. We study the effect of thermal dissociation of H$_{2}$O at higher temperatures by applying atmospheric chemical equilibrium which results in the formation of H$_{2}$ and O$_{2}$ during the early phase of the magma ocean. A 1-6% reduction in the OLR is seen. We also obtain the effective height of the atmosphere by calculating the transmission spectra for the whole duration of the magma ocean. An atmosphere of depth ~100 km is seen for pure water atmospheres. The effect of thermal dissociation on the effective height of the atmosphere is also shown. Due to the difference in the absorption behavior at different altitudes, the spectral features of H$_{2}$ and O$_{2}$ are seen at different altitudes of the atmosphere. Therefore, these species along with H$_{2}$O have a significant contribution to the transmission spectra and could be useful for placing observational constraints upon magma ocean exoplanets.
Ocean planets are volatile rich planets, not present in our Solar System, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planets surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilising carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilising effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.
172 - Y. Fujii , H. Kawahara , Y. Suto 2009
Characterizing the surfaces of rocky exoplanets via the scattered light will be an essential challenge to investigate the existence of life on habitable exoplanets. We present a simple reconstruction method for fractional areas of different surface types from photometric variations, or colors, of a second Earth. We create mock light curves for Earth without clouds using empirical data. Then these light curves are fitted to the isotropic scattering model consisting of 4 surface types: ocean, soil, snow and vegetation. In an idealized situation where the photometric errors are only photon shot noise, we are able to reproduce the fractional areas of those components fairly well. We may be even able to detect a signature of vegetation from the distinct feature of photosynthesis on the Earth, known as the red edge. In our reconstruction method, Rayleigh scattering due to the atmosphere has an important effect, and for terrestrial exoplanets with atmosphere similar to our Earth, it is possible to estimate the presence of oceans and an atmosphere simultaneously.
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most 1D models. We compared the results to those of 3D model calculations in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When treating the surface albedo and the relative humidity profile as parameters in 1D model studies and using the habitability constraints found by recent 3D modeling studies, the same conclusions about the potential habitability of a planet can be drawn as from 3D model calculations.
Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event (GOE) in Earths history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O$_2$ concentrations are fixed to values inferred by geological evidence. Applying a unique tool, ours is the first quantitative analysis of catalytic cycles that governed O$_2$ in early Earths atmosphere near the GOE. Complicated oxidation pathways play a key role in destroying O$_2$, whereas in the upper atmosphere, most O$_2$ is formed abiotically via CO$_2$ photolysis. The O$_2$ bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH$_4$ oxidation scheme. We calculate increased CH$_4$ with increasing O$_2$ during the GOE. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity (NPP) of the biosphere that produces O$_2$ is unique. Mixing, CH$_4$ fluxes, ocean solubility, and mantle/crust properties strongly affect NPP and surface O$_2$ fluxes. Regarding exoplanets, different states of O$_2$ could exist for similar biomass output. Strong geological activity could lead to false negatives for life.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا