No Arabic abstract
Ocean planets are volatile rich planets, not present in our Solar System, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planets surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilising carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilising effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.
Recent observations of the potentially habitable planets TRAPPIST-1 e, f, and g suggest that they possess large water mass fractions of possibly several tens of wt% of water, even though the host stars activity should drive rapid atmospheric escape. These processes can photolyze water, generating free oxygen and possibly desiccating the planet. After the planets formed, their mantles were likely completely molten with volatiles dissolving and exsolving from the melt. In order to understand these planets and prepare for future observations, the magma ocean phase of these worlds must be understood. To simulate these planets, we have combined existing models of stellar evolution, atmospheric escape, tidal heating, radiogenic heating, magma ocean cooling, planetary radiation, and water-oxygen-iron geochemistry. We present MagmOc, a versatile magma ocean evolution model, validated against the rocky Super-Earth GJ 1132b and early Earth. We simulate the coupled magma ocean-atmospheric evolution of TRAPPIST-1 e, f, and g for a range of tidal and radiogenic heating rates, as well as initial water contents between 1 and 100 Earth oceans. We also reanalyze the structures of these planets and find they have water mass fractions of 0-0.23, 0.01-0.21, and 0.11-0.24 for planets e, f, and g, respectively. Our model does not make a strong prediction about the water and oxygen content of the atmosphere of TRAPPIST-1 e at the time of mantle solidification. In contrast, the model predicts that TRAPPIST-1 f and g would have a thick steam atmosphere with a small amount of oxygen at that stage. For all planets that we investigated, we find that only 3-5% of the initial water will be locked in the mantle after the magma ocean solidified.
Terrestrial planets orbiting within the habitable zones of M-stars are likely to become tidally locked in a 1:1 spin:orbit configuration and are prime targets for future characterization efforts. An issue of importance for the potential habitability of terrestrial planets is whether they could experience snowball events (periods of global glaciation). Previous work using an intermediate complexity atmospheric Global Climate Model (GCM) with no ocean heat transport suggested that tidally locked planets would smoothly transition to a snowball, in contrast with Earth, which has bifurcations and hysteresis in climate state associated with global glaciation. In this paper, we use a coupled ocean-atmosphere GCM (ROCKE-3D) to model tidally locked planets with no continents. We chose this configuration in order to consider a case that we expect to have high ocean heat transport. We show that including ocean heat transport does not reintroduce the snowball bifurcation. An implication of this result is that a tidally locked planet in the habitable zone is unlikely to be found in a snowball state for a geologically significant period of time.
Planets form in the discs of gas and dust that surround young stars. It is not known whether gas giant planets on wide orbits form the same way as Jupiter or by fragmentation of gravitationally unstable discs. Here we show that a giant planet, which has formed in the outer regions of a protostellar disc, initially migrates fast towards the central star (migration timescale ~10,000 yr) while accreting gas from the disc. However, in contrast with previous studies, we find that the planet eventually opens up a gap in the disc and the migration is essentially halted. At the same time, accretion-powered radiative feedback from the planet, significantly limits its mass growth, keeping it within the planetary mass regime (i.e. below the deuterium burning limit) at least for the initial stages of disc evolution. Giant planets may therefore be able to survive on wide orbits despite their initial fast inward migration, shaping the environment in which terrestrial planets that may harbour life form.
The early Earths environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 {deg}C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6 (+0.6,-0.4) (2{sigma}) at 4.0 Ga to 7.0 (+0.7,-0.5) (2{sigma}) at the Archean-Proterozoic boundary, and to 7.9 (+0.1,-0.2) (2{sigma}) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.
Clouds have a strong impact on the climate of planetary atmospheres. The potential scattering greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Here, the impact of CO2 ice clouds on the surface temperatures of terrestrial planets with CO2 dominated atmospheres, orbiting different types of stars is studied. Additionally, their corresponding effect on the position of the outer habitable zone boundary is evaluated. For this study, a radiative-convective atmospheric model is used the calculate the surface temperatures influenced by CO2 ice particles. The clouds are included using a parametrised cloud model. The atmospheric model includes a general discrete ordinate radiative transfer that can describe the anisotropic scattering by the cloud particles accurately. A net scattering greenhouse effect caused by CO2 clouds is only obtained in a rather limited parameter range which also strongly depends on the stellar effective temperature. For cool M-stars, CO2 clouds only provide about 6 K of additional greenhouse heating in the best case scenario. On the other hand, the surface temperature for a planet around an F-type star can be increased by 30 K if carbon dioxide clouds are present. Accordingly, the extension of the habitable zone due to clouds is quite small for late-type stars. Higher stellar effective temperatures, on the other hand, can lead to outer HZ boundaries about 0.5 au farther out than the corresponding clear-sky values.