Do you want to publish a course? Click here

The need for a far-infrared cold space telescope to understand the chemistry of planet formation

63   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

At a time when ALMA produces spectacular high resolution images of gas and dust in circumstellar disks, the next observational frontier in our understanding of planet formation and the chemistry of planet-forming material may be found in the mid- to far-infrared wavelength range. A large, actively cooled far-infrared telescope in space will offer enormous spectroscopic sensitivity improvements of 3-4 orders of magnitude, making it possible to uniquely survey certain fundamental properties of planet formation. Specifically, the Origins Space Telescope (OST), a NASA flagship concept to be submitted to the 2020 decadal survey, will provide a platform that allows complete surveys of warm and cold water around young stars of all masses and across all evolutionary stages, and to measure their total planet-forming gas mass using the ground-state line of HD. While this white paper is formulated in the context of the NASA Origins Space Telescope concept, it can be applied in general to inform any future space-based, cold far-infrared observatory.



rate research

Read More

This white paper examines the benefit of the upcoming James Webb Space Telescope for studies of the Solar Systems four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWSTs superior sensitivity, combined with high spatial and spectral resolution, will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.
The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRSTs design where small adjustments could greatly improve its power as an astrometric instrument.
The Star-Planet Activity Research CubeSat (SPARCS) is a NASA-funded astrophysics mission, devoted to the study of the ultraviolet (UV) time-domain behavior in low-mass stars. Given their abundance and size, low-mass stars are important targets in the search for habitable-zone, exoplanets. However, not enough is known about the stars flare and quiescent emission, which powers photochemical reactions on the atmospheres of possible planets. Over its initial 1-year mission, SPARCS will stare at ~10 stars in order to measure short- (minutes) and long- (months) term variability simultaneously in the near-UV (NUV - lam = 280 nm) and far-UV (FUV - lam = 162 nm). The SPARCS payload consists of a 9-cm reflector telescope paired with two high-sensitivity 2D-doped CCDs. The detectors are kept passively cooled at 238K, in order to reduce dark-current contribution. The filters have been selected to provide strong rejection of longer wavelengths, where most of the starlight is emitted. The payload will be integrated within a 6U CubeSat to be placed on a Sun-synchronous terminator orbit, allowing for long observing stares for all targets. Launch is expected to occur not earlier than October 2021.
The Hubble Space Telescope (HST) has been the most impactful science-driven mission ever flown by NASA. However, when HST reaches the end of its life, there will be a void due to the loss of some of the science capabilities afforded by HST to astronomers world-wide. The previous 2010 Decadal Survey (DS) noted this void, arguing for the need for a successor to HST with UV capabilities in three separate places in the main report (pp. 190, 203, and 220). The large strategic missions that will follow HST, namely JWST and WFIRST, will continue to spark the interest of the public in space-based astronomy. In order to ensure continued US preeminence in the arena of large space-based astrophysics missions, and a seamless transition after WFIRST, a future flagship mission must be waiting in the wings. Anticipating this need, NASA initiated four large strategic mission concept studies (HabEx, LUVOIR, Lynx, and Origins), which have mature designs, including detailed technology assessments and development plans. Two of these concepts, HabEx and LUVOIR, are responsive to the recommendations of the previous DS regarding a UV-capable mission. Both are more powerful successors to HST, with UV-to-optical capabilities that range from significant enhancements to orders-of-magnitude improvement. At the same time, technological and scientific advances over the past decade only now make it feasible to marry such a mission with one that can search for life outside the solar system. Acknowledging that the constraints that the Astro2020 DS must consider may be difficult to anticipate, the HabEx and LUVOIR studies present eleven different variants, each of which enable groundbreaking science, including the direct imaging and characterization of exoplanets. The HabEx and LUVOIR mission studies offer a full suite of options to the Astro2020 DS, with corresponding flexibility in budgeting and phasing.
Context. High-contrast imaging is currently the only available technique for the study of the thermodynamical and compositional properties of exoplanets in long-period orbits. The SPICES project is a coronagraphic space telescope dedicated to the spectro-polarimetric analysis of gaseous and icy giant planets as well as super-Earths at visible wavelengths. So far, studies for high-contrast imaging instruments have mainly focused on technical feasibility because of the challenging planet/star flux ratio of 10-8-10-10 required at short separations (200 mas or so) to image cold exoplanets. However, the analysis of planet atmospheric/surface properties has remained largely unexplored. Aims. The aim of this paper is to determine which planetary properties SPICES or an equivalent direct imaging mission can measure, considering realistic reflected planet spectra and instrument limitation. Methods. We use numerical simulations of the SPICES instrument concept and theoretical planet spectra to carry out this performance study. Results. We find that the characterization of the main planetary properties (identification of molecules, effect of metallicity, presence of clouds and type of surfaces) would require a median signal-to-noise ratio of at least 30. In the case of a solar-type star leq 10 pc, SPICES will be able to study Jupiters and Neptunes up to ~5 and ~2 AU respectively. It would also analyze cloud and surface coverage of super-Earths of radius 2.5 RE at 1 AU. Finally, we determine the potential targets in terms of planet separation, radius and distance for several stellar types. For a Sun analog, we show that SPICES could characterize Jupiters (M geq 30 ME) as small as 0.5 Jupiter radii at ~2 AU up to 10 pc, and super-Earths at 1-2 AU for the handful of stars that exist within 4-5 pc. Potentially, SPICES could perform analysis of a hypothetical Earth-size planet around alpha Cen A and B.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا