Do you want to publish a course? Click here

Towards Highly Accurate Coral Texture Images Classification Using Deep Convolutional Neural Networks and Data Augmentation

74   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The recognition of coral species based on underwater texture images pose a significant difficulty for machine learning algorithms, due to the three following challenges embedded in the nature of this data: 1) datasets do not include information about the global structure of the coral; 2) several species of coral have very similar characteristics; and 3) defining the spatial borders between classes is difficult as many corals tend to appear together in groups. For this reason, the classification of coral species has always required an aid from a domain expert. The objective of this paper is to develop an accurate classification model for coral texture images. Current datasets contain a large number of imbalanced classes, while the images are subject to inter-class variation. We have analyzed 1) several Convolutional Neural Network (CNN) architectures, 2) data augmentation techniques and 3) transfer learning. We have achieved the state-of-the art accuracies using different variations of ResNet on the two current coral texture datasets, EILAT and RSMAS.



rate research

Read More

Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layers of the network. We show that across layers the texture representations increasingly capture the statistical properties of natural images while making object information more and more explicit. The model provides a new tool to generate stimuli for neuroscience and might offer insights into the deep representations learned by convolutional neural networks.
Image representations, from SIFT and bag of visual words to Convolutional Neural Networks (CNNs) are a crucial component of almost all computer vision systems. However, our understanding of them remains limited. In this paper we study several landmark representations, both shallow and deep, by a number of complementary visualization techniques. These visualizations are based on the concept of natural pre-image, namely a natural-looking image whose representation has some notable property. We study in particular three such visualizations: inversion, in which the aim is to reconstruct an image from its representation, activation maximization, in which we search for patterns that maximally stimulate a representation component, and caricaturization, in which the visual patterns that a representation detects in an image are exaggerated. We pose these as a regularized energy-minimization framework and demonstrate its generality and effectiveness. In particular, we show that this method can invert representations such as HOG more accurately than recent alternatives while being applicable to CNNs too. Among our findings, we show that several layers in CNNs retain photographically accurate information about the image, with different degrees of geometric and photometric invariance.
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated by the well-known curse of dimensionality phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labelling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33 - 99.39% for these benchmark study sites.
In recent years, much research has been conducted on image super-resolution (SR). To the best of our knowledge, however, few SR methods were concerned with compressed images. The SR of compressed images is a challenging task due to the complicated compression artifacts, while many images suffer from them in practice. The intuitive solution for this difficult task is to decouple it into two sequential but independent subproblems, i.e., compression artifacts reduction (CAR) and SR. Nevertheless, some useful details may be removed in CAR stage, which is contrary to the goal of SR and makes the SR stage more challenging. In this paper, an end-to-end trainable deep convolutional neural network is designed to perform SR on compressed images (CISRDCNN), which reduces compression artifacts and improves image resolution jointly. Experiments on compressed images produced by JPEG (we take the JPEG as an example in this paper) demonstrate that the proposed CISRDCNN yields state-of-the-art SR performance on commonly used test images and imagesets. The results of CISRDCNN on real low quality web images are also very impressive, with obvious quality enhancement. Further, we explore the application of the proposed SR method in low bit-rate image coding, leading to better rate-distortion performance than JPEG.
Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCry and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the papers model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا