No Arabic abstract
We investigate a spin-$1/2$ two-leg honeycomb ladder with frustrating next-nearest-neighbor (NNN) coupling along the legs, which is equivalent to two $J_1$-$J_2$ spin chains coupled with $J_perp$ at odd rungs. The full parameter region of the model is systematically studied using conventional and infinite density-matrix renormalization group as well as bosonization. The rich phase diagram consists of five distinct phases: A Haldane phase, a NNN-Haldane phase and a staggered dimer phase when $J_{perp} < 0$; a rung singlet phase and a columnar dimer phase when $J_{perp} > 0$. An interesting reentrant behavior from the dimerized phase into the Haldane phase is found as the frustration $J_2$ increases. The universalities of the critical phase transitions are fully analyzed. Phase transitions between dimerized and disordered phases belong to the two-dimensional Ising class with central charge $c=1/2$. The transition from the Haldane phase to NNN-Haldane phase is of a weak topological first order, while the continuous transition between the Haldane phase and rung singlet phase has central charge $c=2$.
Motivated by the recent experiment on a rare-earth material YbMgGaO$_4$ [Y. Li textit{et al.}, Phys. Rev. Lett. textbf{115}, 167203 (2015)], which found that the ground state of YbMgGaO$_4$ is a quantum spin liquid, we study the ground-state phase diagram of an anisotropic spin-$1/2$ model that was proposed to describe YbMgGaO$_4$. Using the density-matrix renormalization group method in combination with the exact diagonalization, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram there is a $120^{circ}$ phase and two distinct stripe phases. The transitions from the two stripe phases to the $120^{circ}$ phase are of the first order. However, the transition between the two stripe phases is not the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may be also important to model the material YbMgGaO$_4$. These findings will stimulate further experimental and theoretical works in understanding the quantum spin liquid ground state in YbMgGaO$_4$.
We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be mapped to a spin-1 spatially anisotropic triangular lattice. The magnetization curve exhibits gapped behavior indicative of a dominant one-dimensional (1D) AF correlation. In the field-induced gapless phase, the specific heat and magnetic susceptibility show a phase transition to an ordered state with 2D characteristics. These results indicate that the spin-1 Haldane state is extended to the 2D system. We demonstrate that the gapped ground state observed in the present spin-1/2 frustrated square lattice originates from the one-dimensionalization caused by frustration.
We study the ground state properties of the Hubbard model on a 4-leg cylinder with doped hole concentration per site $deltaleq 12.5%$ using density-matrix renormalization group. By keeping a large number of states for long system sizes, we find that the nature of the ground state is remarkably sensitive to the presence of next-nearest-neighbor hopping $t$. Without $t$ the ground state of the system corresponds with the insulating filled stripe phase with long-range charge-density-wave (CDW) order and short-range incommensurate spin correlations appears. However, for a small negative $t$ a phase characterized by coexisting algebraic d-wave superconducting (SC)- and algebraic CDW correlations. In addition, it shows short range spin- and fermion correlations consistent with a canonical Luther-Emery (LE) liquid, except that the charge- and spin periodicities are consistent with half-filled stripes instead of the $4 k_F$ and $2 k_F$ wavevectors generic for one dimensional chains. For a small positive $t$ yet another phase takes over showing similar SC and CDW correlations. However, the fermions are now characterized by a (near) infinite correlation length while the gapped spin system is characterized by simple staggered antiferromagnetic correlations. We will show that this is consistent with a LE formed from a weakly coupled (BCS like) d-wave superconductor on the ladder where the interactions have only the effect to stabilize a cuprate style magnetic resonance.
The quantum phases of 2-leg spin-1/2 ladders with skewed rungs are obtained using exact diagonalization of systems with up to 26 spins and by density matrix renormalization group calculations to 500 spins. The ladders have isotropic antiferromagnetic (AF) exchange $J_2 > 0$ between first neighbors in the legs, variable isotropic AF exchange $J_1$ between some first neighbors in different legs, and an unpaired spin per odd-membered ring when $J_1 gg J_2$. Ladders with skewed rungs and variable $J_1$ have frustrated AF interactions leading to multiple quantum phases: AF at small $J_1$, either F or AF at large $J_1$, as well as bond-order-wave phases or reentrant AF (singlet) phases at intermediate $J_1$.
We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. We present the magnetic contribution to the heat capacity of a two-leg ladder. The spin-gap Delta/k_B =3 4 K obtained from the heat capacity agrees very well with that obtained from the magnetic susceptibility. Significant inter-ladder coupling is suggested from the susceptibility analysis. The hopping integrals determined using Nth order muffin tin orbital (NMTO) based downfolding method lead to ratios of various exchange couplings in agreement with our experimental data. Based on our band structure analysis, we find the inter-ladder coupling in the bc-plane J2 to be about 0.75J1 placing the compound presumably close to the quantum critical limit.