Do you want to publish a course? Click here

Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

410   0   0.0 ( 0 )
 Added by Dong Song
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

rate research

Read More

117 - Jongmin Seo , Ali Mani 2017
Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most of previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in lab-scale experiments. We conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths $w^+approx 4-26$, and solid fractions $phi_s=11%$ to $25%$. Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows are about $30%$ less than those of surfaces with aligned features of the same size. In the small texture size limit $w^+approx 4$, the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice larger when the textures are randomly distributed.
The macroscopic dynamics of a droplet impacting a solid is crucially determined by the intricate air dynamics occurring at the vanishingly small length scale between droplet and substrate prior to direct contact. Here we investigate the inverse problem, namely the role of air for the impact of a horizontal flat disk onto a liquid surface, and find an equally significant effect. Using an in-house experimental technique, we measure the free surface deflections just before impact, with a precision of a few micrometers. Whereas stagnation pressure pushes down the surface in the center, we observe a lift-up under the edge of the disk, which sets in at a later stage, and which we show to be consistent with a Kelvin-Helmholtz instability of the water-air interface.
Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a micro- and nanoscopic texture. Recent work has focused on specific cases, such as striped grooves or arrays of pillars, with limited theoretical guidance. Here, we consider the experimentally relevant limit of thin channels and obtain rigorous bounds on the effective slip length for any two-component (e.g. low-slip and high-slip) texture with given area fractions. Among all anisotropic textures, parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel (or perpendicular) orientation with respect to the mean flow. For isotropic (e.g. chessboard or random) textures, the Hashin-Strikman conditions further constrain the effective slip. These results provide a framework for the rational design of superhydrophobic surfaces.
Drops impacting on a surface are ubiquitous in our everyday experience. This impact is understood within a commonly accepted hydrodynamic picture: it is initiated by a rapid shock and a subsequent ejection of a sheet leading to beautiful splashing patterns. However, this picture ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air must break down as the fluid wets the surface. We suggest that this occurs in a spinodal-like fashion, and causes a very rapid spreading of a wetting front outwards; simultaneously the wetting fluid spreads inward much more slowly, trapping a bubble of air within the drop. Our results show that the dynamics of impacting drops are much more complex than previously thought and exhibit a rich array of unexpected phenomena that require rethinking classical paradigms.
Under continuous laser irradiation, noble metal nanoparticles immersed in water can quickly heat up, leading to the nucleation of so-called plasmonic bubbles. In this work, we want to further understand the bubble nucleation and growth mechanism. In particular, we quantitatively study the effect of the amount of dissolved air on the bubble nucleation and growth dynamics, both for the initial giant bubble, which forms shortly after switching on the laser and is mainly composed of vapor, and for the final life phase of the bubble, during which it mainly contains air expelled from water. We found that the bubble nucleation temperature depends on the gas concentration: the higher the gas concentration, the lower the bubble nucleation temperature. Also, the long-term diffusiondominated bubble growth is governed by the gas concentration. The radius of the bubbles grows as R(t)~t^1/3 for airequilibrated and air-oversaturated water. In contrast, in partially degassed water, the growth is much slower since, even for the highest temperature we achieve, the water remains undersaturated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا