Do you want to publish a course? Click here

Estimates of the baryon densities attainable in heavy-ion collisions from the beam energy scan program

70   0   0.0 ( 0 )
 Added by Yuri B. Ivanov
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The baryon and energy densities attained in fragmentation regions in central Au+Au collisions in the energy range of the Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC) are estimated within the model of the three-fluid dynamics. It is shown that a considerable part of the baryon charge is stopped in the central fireball. Even at 39 GeV, approximately 70% of the total baryon charge turns out to be stopped. The fraction of this stopped baryon charge decreases with collision energy rise, from 100% at 7.7 GeV to $sim$40% at 62 GeV. The highest initial baryon densities of the thermalized matter, $n_B/n_0 approx$ 10, are reached in the central region of colliding nuclei at $sqrt{s_{NN}}=$ 20--40 GeV. These highest densities develop up to quite moderate freeze-out baryon densities at the midrapidity because the matter of the central fireball is pushed out to fragmentation regions by one-dimensional expansion. Therefore, consequences of these high initial baryon densities can be observed only in the fragmentation regions of colliding nuclei in AFTER@LHC experiments in the fixed-target mode.

rate research

Read More

Kinetic equilibration of the matter and baryon densities attained in central region of colliding Au+Au nuclei in the energy range of $sqrt{s_{NN}}=$ 3.3--39 GeV are examined within the model of the three-fluid dynamics. It is found that the kinetic equilibration is faster at higher collision energies: the equilibration time (in the c.m. frame of colliding nuclei) rises from $sim$5 fm/c at $sqrt{s_{NN}}=$ 3.3 GeV to $sim$1 fm/c at 39 GeV. The chemical equilibration, and thus thermalization, takes longer. We argue that the presented time evolution of the net-baryon and energy densities in the central region is a necessary prerequisite of proper reproduction of bulk observables in midrapidity. We suggest that for informative comparison of predictions of different models it is useful to calculate an invariant 4-volume ($V_4$), where the proper density the equilibrated matter exceeds certain value. The advantage of this 4-volume is that it does not depend on specific choice of the 3-volume in different studies and takes into account the lifetime of the high-density region, which also matters. The 4-volume $V_4=$ 100 fm$^4$/c is chosen to compare the baryon densities attainable at different different energies. It is found that the highest proper baryon density increases with the collision energy rise, from $n_B/n_0approx$ 4 at 3.3 GeV to $n_B/n_0approx$ 30 at 39 GeV. These highest densities are achieved in the central region of colliding system.
We present measurements of bulk properties of the matter produced in Au+Au collisions at $sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons ($pi^pm$, $K^pm$, $p$ and $bar{p}$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity ($|y|<$0.1) results for multiplicity densities $dN/dy$, average transverse momenta $langle p_T rangle$ and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.
97 - Yu Guo , Jinfeng Liao , Enke Wang 2021
In 2017, STAR Collaboration reported the measurements of hyperon global polarization in heavy ion collisions, suggesting the subatomic fireball fluid created in these collisions as the most vortical fluid. There remains the interesting question: at which beam energy the truly most vortical fluid will be located. In this work we perform a systematic study on the beam energy dependence of hyperon global polarization phenomenon, especially in the interesting $hat{O}(1sim 10) rm GeV$ region. We find a non-monotonic trend, with the global polarization to first increase and then decrease when beam energy is lowered from $27~rm GeV$ down to $3~rm GeV$. The maximum polarization signal has been identified around $sqrt{s_{NN}} = 7.7~rm GeV$, where the heavy ion collisions presumably create the most vortical fluid. Detailed experimental measurements in the $hat{O}(1sim 10) rm GeV$ beam energy region are expected to test the prediction very soon.
102 - S. Zhang , Y. G. Ma , G. L. Ma 2020
Initial geometrical distribution and fluctuation can affect the collective expansion in relativistic heavy-ion collisions. This effect may be more evident in small system (such as B + B) than in large one (Pb + Pb). This work presents the collision system dependence of collective flows and discusses about effects on collective flows from initial fluctuations in a framework of a multiphase transport model. The results shed light on system scan on experimental efforts to small system physics.
We present a few estimates of energy densities reached in heavy-ion collisions at the CERN SPS. The estimates are based on data and models of proton-nucleus and nucleus-nucleus interactions. In all of these estimates the maximum energy density in central Pb+Pb interactions is larger than the critical energy density of about 0.7 GeV/fm^3 following from lattice gauge theory computations. In estimates which we consider as realistic the maximum energy density is about twice the critical value. In this way our analysis gives some support to claims that deconfined matter has been produced at the CERN SPS. Any definite statement requires a deeper understanding of formation times of partons and hadrons in nuclear collisions. We also compare our results with implicit energy estimates contained in earlier models of anomalous J/psi suppression in nuclear collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا