Cross-lingual Hypernymy Detection involves determining if a word in one language (fruit) is a hypernym of a word in another language (pomme i.e. apple in French). The ability to detect hypernymy cross-lingually can aid in solving cross-lingu
Linear embedding transformation has been shown to be effective for zero-shot cross-lingual transfer tasks and achieve surprisingly promising results. However, cross-lingual embedding space mapping is usually studied in static word-level embeddings, where a space transformation is derived by aligning representations of translation pairs that are referred from dictionaries. We move further from this line and investigate a contextual embedding alignment approach which is sense-level and dictionary-free. To enhance the quality of the mapping, we also provide a deep view of properties of contextual embeddings, i.e., anisotropy problem and its solution. Experiments on zero-shot dependency parsing through the concept-shared space built by our embedding transformation substantially outperform state-of-the-art methods using multilingual embeddings.
Syntactic parsing is a highly linguistic processing task whose parser requires training on treebanks from the expensive human annotation. As it is unlikely to obtain a treebank for every human language, in this work, we propose an effective cross-lingual UD parsing framework for transferring parser from only one source monolingual treebank to any other target languages without treebank available. To reach satisfactory parsing accuracy among quite different languages, we introduce two language modeling tasks into dependency parsing as multi-tasking. Assuming only unlabeled data from target languages plus the source treebank can be exploited together, we adopt a self-training strategy for further performance improvement in terms of our multi-task framework. Our proposed cross-lingual parsers are implemented for English, Chinese, and 22 UD treebanks. The empirical study shows that our cross-lingual parsers yield promising results for all target languages, for the first time, approaching the parser performance which is trained in its own target treebank.
The automatic detection of hypernymy relationships represents a challenging problem in NLP. The successful application of state-of-the-art supervised approaches using distributed representations has generally been impeded by the limited availability of high quality training data. We have developed two novel data augmentation techniques which generate new training examples from existing ones. First, we combine the linguistic principles of hypernym transitivity and intersective modifier-noun composition to generate additional pairs of vectors, such as small dog - dog or small dog - animal, for which a hypernymy relationship can be assumed. Second, we use generative adversarial networks (GANs) to generate pairs of vectors for which the hypernymy relation can also be assumed. We furthermore present two complementary strategies for extending an existing dataset by leveraging linguistic resources such as WordNet. Using an evaluation across 3 different datasets for hypernymy detection and 2 different vector spaces, we demonstrate that both of the proposed automatic data augmentation and dataset extension strategies substantially improve classifier performance.
Existing methods of hypernymy detection mainly rely on statistics over a big corpus, either mining some co-occurring patterns like animals such as cats or embedding words of interest into context-aware vectors. These approaches are therefore limited by the availability of a large enough corpus that can cover all terms of interest and provide sufficient contextual information to represent their meaning. In this work, we propose a new paradigm, HyperDef, for hypernymy detection -- expressing word meaning by encoding word definitions, along with context driven representation. This has two main benefits: (i) Definitional sentences express (sense-specific) corpus-independent meanings of words, hence definition-driven approaches enable strong generalization -- once trained, the model is expected to work well in open-domain testbeds; (ii) Global context from a large corpus and definitions provide complementary information for words. Consequently, our model, HyperDef, once trained on task-agnostic data, gets state-of-the-art results in multiple benchmarks
We introduce a novel method for multilingual transfer that utilizes deep contextual embeddings, pretrained in an unsupervised fashion. While contextual embeddings have been shown to yield richer representations of meaning compared to their static counterparts, aligning them poses a challenge due to their dynamic nature. To this end, we construct context-independent variants of the original monolingual spaces and utilize their mapping to derive an alignment for the context-dependent spaces. This mapping readily supports processing of a target language, improving transfer by context-aware embeddings. Our experimental results demonstrate the effectiveness of this approach for zero-shot and few-shot learning of dependency parsing. Specifically, our method consistently outperforms the previous state-of-the-art on 6 tested languages, yielding an improvement of 6.8 LAS points on average.