No Arabic abstract
We generalize an approach from a 1960 paper by Ljunggren, leading to a practical algorithm that determines the set of $N > operatorname{deg}(c) + operatorname{deg}(d)$ such that the polynomial $$f_N(x) = x^N c(x^{-1}) + d(x)$$ is irreducible over $mathbb Q$, where $c, d in mathbb Z[x]$ are polynomials with nonzero constant terms and satisfying suitable conditions. As an application, we show that $x^N - k x^2 + 1$ is irreducible for all $N ge 5$ and $k in {3, 4, ldots, 24} setminus {9, 16}$. We also give a complete description of the factorization of polynomials of the form $x^N + k x^{N-1} pm (l x + 1)$ with $k, l in mathbb Z$, $k eq l$.
Let $S subset R$ be an arbitrary subset of a unique factorization domain $R$ and $K$ be the field of fractions of $R$. The ring of integer-valued polynomials over $S$ is the set $mathrm{Int}(S,R)= { f in mathbb{K}[x]: f(a) in R forall a in S }.$ This article is an effort to study the irreducibility of integer-valued polynomials over arbitrary subsets of a unique factorization domain. We give a method to construct special kinds of sequences, which we call $d$-sequences. We then use these sequences to obtain a criteria for the irreducibility of the polynomials in $mathrm{Int}(S,R).$ In some special cases, we explicitly construct these sequences and use these sequences to check the irreducibility of some polynomials in $mathrm{Int}(S,R).$ At the end, we suggest a generalization of our results to an arbitrary subset of a Dedekind domain.
We determine the irreducible components of Igusa varieties for Shimura varieties of Hodge type and use that to determine the irreducible components of central leaves. In particular, we show that the discrete Hecke-orbit conjecture is false in general. Our method combines recent work of DAddezio on monodromy of compatible local systems with a generalisation of a method of Hida, using the Honda-Tate theory for Shimura varieties of Hodge type developed by Kisin-Madapusi Pera-Shin. We also determine the irreducible components of Newton strata in Shimura varieties of Hodge type by combining our results with recent work of Zhou-Zhu.
This article shows that for unitary dual reductive pairs the first occurrence of theta lift of an irreducible cuspidal automorphic representation is irreducible. It also proves a refined tower property for theta lifts and the involutive property for twisted theta lifts.
Permutation polynomials (PPs) of the form $(x^{q} -x + c)^{frac{q^2 -1}{3}+1} +x$ over $mathbb{F}_{q^2}$ were presented by Li, Helleseth and Tang [Finite Fields Appl. 22 (2013) 16--23]. More recently, we have constructed PPs of the form $(x^{q} +bx + c)^{frac{q^2 -1}{d}+1} -bx$ over $mathbb{F}_{q^2}$, where $d=2, 3, 4, 6$ [Finite Fields Appl. 35 (2015) 215--230]. In this paper we concentrate our efforts on the PPs of more general form [ f(x)=(ax^{q} +bx +c)^r phi((ax^{q} +bx +c)^{(q^2 -1)/d}) +ux^{q} +vx~~text{over $mathbb{F}_{q^2}$}, ] where $a,b,c,u,v in mathbb{F}_{q^2}$, $r in mathbb{Z}^{+}$, $phi(x)in mathbb{F}_{q^2}[x]$ and $d$ is an arbitrary positive divisor of $q^2-1$. The key step is the construction of a commutative diagram with specific properties, which is the basis of the Akbary--Ghioca--Wang (AGW) criterion. By employing the AGW criterion two times, we reduce the problem of determining whether $f(x)$ permutes $mathbb{F}_{q^2}$ to that of verifying whether two more polynomials permute two subsets of $mathbb{F}_{q^2}$. As a consequence, we find a series of simple conditions for $f(x)$ to be a PP of $mathbb{F}_{q^2}$. These results unify and generalize some known classes of PPs.
Recently, Corvaja and Zannier obtained an extension of the Subspace Theorem with arbitrary homogeneous polynomials of arbitrary degreee instead of linear forms. Their result states that the set of solutions in P^n(K) (K number field) of the inequality being considered is not Zariski dense. In our paper we prove by a different method a generalization of their result, in which the solutions are taken from an arbitrary projective variety X instead of P^n. Further, we give a quantitative version which states in a precise form that the solutions with large height lie ina finite number of proper subvarieties of X, with explicit upper bounds for the number and for the degrees of these subvarieties.