Do you want to publish a course? Click here

Planck Observations of M33

99   0   0.0 ( 0 )
 Added by Christopher Tibbs
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed a comprehensive investigation of the global integrated flux density of M33 from radio to ultraviolet wavelengths, finding that the data between $sim$100 GHz and 3 THz are accurately described by a single modified blackbody curve with a dust temperature of $T_mathrm{dust}$ = 21.67$pm$0.30 K and an effective dust emissivity index of $beta_mathrm{eff}$ = 1.35$pm$0.10, with no indication of an excess of emission at millimeter/sub-millimeter wavelengths. However, sub-dividing M33 into three radial annuli, we found that the global emission curve is highly degenerate with the constituent curves representing the sub-regions of M33. We also found gradients in $T_mathrm{dust}$ and $beta_mathrm{eff}$ across the disk of M33, with both quantities decreasing with increasing radius. Comparing the M33 dust emissivity with that of other Local Group members, we find that M33 resembles the Magellanic Clouds rather than the larger galaxies, i.e., the Milky Way and M31. In the Local Group sample, we find a clear correlation between global dust emissivity and metallicity, with dust emissivity increasing with metallicity. A major aspect of this analysis is the investigation into the impact of fluctuations in the Cosmic Microwave Background (CMB) on the integrated flux density spectrum of M33. We found that failing to account for these CMB fluctuations would result in a significant over-estimate of $T_mathrm{dust}$ by $sim$5 K and an under-estimate of $beta_mathrm{eff}$ by $sim$0.4.



rate research

Read More

We compare the properties of clouds in simulated M33 galaxies to those observed in the real M33. We apply a friends of friends algorithm and CPROPS to identify clouds, as well as a pixel by pixel analysis. We obtain very good agreement between the number of clouds, and maximum mass of clouds. Both are lower than occurs for a Milky Way-type galaxy and thus are a function of the surface density, size and galactic potential of M33. We reproduce the observed dependence of molecular cloud properties on radius in the simulations, and find this is due to the variation in gas surface density with radius. The cloud spectra also show good agreement between the simulations and observations, but the exact slope and shape of the spectra depends on the algorithm used to find clouds, and the range of cloud masses included when fitting the slope. Properties such as cloud angular momentum, velocity dispersions and virial relation are also in good agreement between the simulations and observations, but do not necessarily distinguish between simulations of M33 and other galaxy simulations. Our results are not strongly dependent on the level of feedback used here (10 and 20%) although they suggest that 15% feedback efficiency may be optimal. Overall our results suggest that the molecular cloud properties are primarily dependent on the gas and mass surface density, and less dependent on the localised physics such as the details of stellar feedback, or the numerical code used.
Context. Measuring star formation at a local scale is important to constrain star formation laws. Yet, it is not clear whether and how the measure of star formation is affected by the spatial scale at which a galaxy is observed. Aims. We want to understand the impact of the resolution on the determination of the spatially resolved star formation rate (SFR) and other directly associated physical parameters such as the attenuation. Methods. We have carried out a multi-scale, pixel-by-pixel study of the nearby galaxy M33. Assembling FUV, Halpha, 8, 24, 70, and 100 micron maps, we have systematically compared the emission in individual bands with various SFR estimators from a resolution of 33 pc to 2084 pc. Results. We have found that there are strong, scale-dependent, discrepancies up to a factor 3 between monochromatic SFR estimators and Halpha+24 micron. The scaling factors between individual IR bands and the SFR show a strong dependence on the spatial scale and on the intensity of star formation. Finally, strong variations of the differential reddening between the nebular emission and the stellar continuum are seen, depending on the specific SFR (sSFR) and on the resolution. At the finest spatial scales, there is little differential reddening at high sSFR. The differential reddening increases with decreasing sSFR. At the coarsest spatial scales the differential reddening is compatible with the canonical value found for starburst galaxies. Conclusions. Our results confirm that monochromatic estimators of the SFR are unreliable at scales smaller than 1 kpc. Furthermore, the extension of local calibrations to high redshift galaxies presents non-trivial challenges as the properties of these systems may be poorly known.
We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine and Li in 2007 (DL). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density, the optical extinction Av, and the starlight intensity parametrized by Umin. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas. We compare the DL optical extinction Av for the diffuse interstellar medium with optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan digital sky survey. The DL Av estimates are larger than those determined towards QSOs by a factor of about 2, which depends on Umin. The DL fitting parameter Umin, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit Av, and not only in the starlight intensity. To circumvent the model deficiency, we propose an empirical renormalization of the DL Av estimate, dependent of Umin, which compensates for the systematic differences found with QSO observations. This renormalization also brings into agreement the DL Av estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey. The DL model and the QSOs data are used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by Umin, which may be used to test and empirically calibrate dust models.
We present high resolution (R = 60,000) measurements of the NaI D1 and D2 (5890 A) and CaII K (3933 A) interstellar absorption line profiles recorded towards several post-AGB stars located within the M13 and M15 globular clusters, supplemented with a lower resolution spectrum of the CaII K-line observed in absorption towards an Ofpe/WN9 star in the central region of the M33 galaxy. The normalized interstellar absorption profiles have been fit with cloud component velocities, doppler widths and column densities in order to investigate the kinematics and physical conditions of the neutral and partially ionized gas observed along each sight-line. Our CaII observations towards M13 have revealed 4 absorption components that can be identified with galactic Intermediate Velocity Clouds (IVCs) spanning the -50 > Vlsr > -80 km/s range. The NaI/CaII ratio for these IVCs is<0.3, which characterizes the gas as being warm (T=1000 K) and partially ionized. Similar observations towards two stars within M15 have revealed absorption due to a galactic IVC at Vlsr=+65 km/s. This IVC is revealed to have considerable velocity structure, requiring at least 3 cloud components to fit the observed NaI and CaII profiles. CaII K-line observations of a sight-line towards the center of the M33 galaxy have revealed at least 10 cloud components. A cloud at Vlsr=-130 km/s is either an IVC associated with the M33 galaxy occurring at +45 km/s with respect to the M33 local standard of rest, or it is a newly discovered HVC associated with our own Galaxy. In addition, 4 clouds have been discovered in the -165 > Vlsr > -205 km/s range. Three of these clouds are identified with the disk gas of M33, whereas a component at - 203 km/s could be IVC gas in the surrounding halo of M33.
The Planck Early Release Compact Source Catalogue includes 26 sources with no obvious matches in other radio catalogues (of primarily extragalactic sources). Here we present observations made with the Arcminute Microkelvin Imager Small Array (AMI SA) at 15.75 GHz of the eight of the unmatched sources at declination > +10 degrees. Of the eight, four are detected and are associated with known objects. The other four are not detected with the AMI SA, and are thought to be spurious.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا