No Arabic abstract
For a plane gravitational wave whose profile is given, in Brinkmann coordinates, by a $2times2$ symmetric traceless matrix $K(U)$, the matrix Sturm-Liouville equation $ddot{P}=KP$ plays a multiple and central r^ole: (i) it determines the isometries, (ii) it appears as the key tool for switching from Brinkmann to BJR coordinates and vice versa, (iii) it determines the trajectories of particles initially at rest. All trajectories can be obtained from trivial Carrollian ones by a suitable action of the (broken) Carrollian isometry group.
Recently the memory effect has been studied in plane gravitational waves and, in particular, in impulsive plane waves. Based on an analysis of the particle motion (mainly in Baldwin-Jeffery-Rosen coordinates) a velocity memory effect is claimed to be found in [P.-M. Zhang, C. Duval, and P. A. Horvathy. Memory effect for impulsive gravitational waves. Classical Quantum Gravity, 35(6):065011, 20, 2018]. Here we point out a conceptual mistake in this account and employ earlier works to explain how to correctly derive the particle motion and how to correctly deal with the notorious distributional Brinkmann form of the metric and its relation to the continuous Rosen form.
We show that Liouville gravity arises as the limit of pure Einstein gravity in 2+epsilon dimensions as epsilon goes to zero, provided Newtons constant scales with epsilon. Our procedure - spherical reduction, dualization, limit, dualizing back - passes several consistency tests: geometric properties, interactions with matter and the Bekenstein-Hawking entropy are as expected from Einstein gravity.
We explicitly calculate the gravitational wave memory effect for classical point particle sources in linearized gravity off of an even dimensional Minkowski background. We show that there is no memory effect in $d>4$ dimensions, in agreement with the general analysis of Hollands, Ishibashi, and Wald (2016).
In this paper we return to the subject of Jacobi metrics for timelike and null geodsics in stationary spactimes, correcting some previous misconceptions. We show that not only null geodesics, but also timelike geodesics are governed by a Jacobi-Maupertuis type variational principle and a Randers-Finsler metric for which we give explicit formulae. The cases of the Taub-NUT and Kerr spacetimes are discussed in detail. Finally we show how our Jacobi-Maupertuis Randers-Finsler metric may be expressed in terms of the effective medium describing the behaviour of Maxwells equations in the curved spacetime. In particular, we see in very concrete terms how the magnetolectric susceptibility enters the Jacobi-Maupertuis-Randers-Finsler function.
The general relativistic Poynting-Robertson effect is a dissipative and non-linear dynamical system obtained by perturbing through radiation processes the geodesic motion of test particles orbiting around a spinning compact object, described by the Kerr metric. Using the Melnikov method we find that, in a suitable range of parameters, chaotic behavior is present in the motion of a test particle driven by the Poynting-Robertson effect in the Kerr equatorial plane.