No Arabic abstract
Let $Omegasubsetmathbb{R}^N$, $Nge 2,$ be a bounded domain with an outward power-like peak which is assumed not too sharp in a suitable sense. We consider the Laplacian $umapsto -Delta u$ in $Omega$ with the Robin boundary condition $partial_n u=alpha u$ on $partialOmega$ with $partial_n$ being the outward normal derivative and $alpha>0$ being a parameter. We show that for large $alpha$ the associated eigenvalues $E_j(alpha)$ behave as $E_j(alpha)sim -epsilon_j alpha^ u$, where $ u>2$ and $epsilon_j>0$ depend on the dimension and the peak geometry. This is in contrast with the well-known estimate $E_j(alpha)=O(alpha^2)$ for the Lipschitz domains.
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schrodinger-type operator on the boundary of the domain with boundary conditions at the corners.
In this paper we deal with spectral optimization for the Robin Laplacian on a family of planar domains admitting parallel coordinates, namely a fixed-width strip built over a smooth closed curve and the exterior of a convex set with a smooth boundary. We show that if the curve length is kept fixed, the first eigenvalue referring to the fixed-width strip is for any value of the Robin parameter maximized by a circular annulus. Furthermore, we prove that the second eigenvalue in the exterior of a convex domain $Omega$ corresponding to a negative Robin parameter does not exceed the analogous quantity for a disk whose boundary has a curvature larger than or equal to the maximum of that for $partialOmega$.
We study Schroedinger operators with Robin boundary conditions on exterior domains in $R^d$. We prove sharp point-wise estimates for the associated semi-groups which show, in particular, how the boundary conditions affect the time decay of the heat kernel in dimensions one and two. Applications to spectral estimates are discussed as well.
We study the long time behavior of small (in $l^2$) solutions of discrete nonlinear Schrodinger equations with potential. In particular, we are interested in the case that the corresponding discrete Schrodinger operator has exactly two eigenvalues. We show that under the nondegeneracy condition of Fermi Golden Rule, all small solutions decompose into a nonlinear bound state and dispersive wave. We further show the instability of excited states and generalized equipartition property.
We discuss several geometric conditions guaranteeing the finiteness or the infiniteness of the discrete spectrum for Robin Laplacians on conical domains.