No Arabic abstract
We study hydrodynamics, heat transfer and entropy generation in pressure-driven microchannel flow of a power-law fluid. Specifically, we address the effect of asymmetry in the slip boundary condition at the channel walls. Constant, uniform but unequal heat fluxes are imposed at the walls in this thermally developed flow. The effect of asymmetric slip on the velocity profile, on the wall shear stress, on the temperature distribution, on the Bejan number profiles, and on the average entropy generation and the Nusselt number are established through the numerical evaluation of exact analytical expressions derived. Specifically, due to asymmetric slip, the fluid momentum flux and thermal energy flux are enhanced along the wall with larger slip, which in turn shifts the location of the velocitys maximum to an off-center location closer to the said wall. Asymmetric slip is also shown to redistribute the peaks and plateaus of the Bejan number profile across the microchannel, showing a sharp transition between entropy generation due to heat transfer and due to fluid flow at an off-center-line location. In the presence of asymmetric slip, the difference in the imposed heat fluxes leads to starkly different Bejan number profiles depending on which wall is hotter, and whether the fluid is shear-thinning or shear-thickening. Overall, slip is shown to promote uniformity in both the velocity field and the temperature field, thereby reducing irreversibility in this flow.
The internal flow in corrugated tubes of different helical pitch, covering from the laminar to turbulent regime, was studied in order to characterize the three-dimensional flow and the influence of corrugation geometry on pressure drop and convective heat transfer. With water as working fluid and an imposed wall heat flux, ranging from around 4 to 33 kW/m2, a numerical model was developed with a CFD commercial software, where k-omega SST was used to model turbulence. Experimental tests were performed covering Reynolds numbers in the range from around 300 up to 5000, which allowed to identify the transition region and validate the numerical model. The results show that due to the swirl induced by the corrugation, the critical Reynolds number for the start of transition to turbulent flow is reduced. The thermal performance factor, which quantifies the heat transfer enhancement at the expense of pressure drop, was used to compare the corrugated tubes against the reference case of smooth tube. Based on this, all investigated corrugated geometries performed better than the smooth tube, except for low Reynolds numbers (Re<500) in the laminar regime. Overall, the corrugated tube with the lowest pitch showed a clearly better performance for the intermediate range of Reynolds numbers (1000<Re<2300), being an optimal choice for a wider range of operating conditions in the transitional and turbulent flow regimes.
Transport phenomena involving condensate liquids generated from the phase change heat transfer in microchannels and in engineered superhydrophobic surfaces require consideration of slip effects. In this study, the laminar film condensation over upward facing flat slabs and circular disks of finite sizes with free edges in the presence of wall slip effects is investigated. By considering the Navier slip model and extending the classical Nusselt analysis, the mass, momentum, and energy of the liquid film in two-dimensional and axisymmetric coordinates are solved for the film thickness and the heat transfer rate in non-dimensional form. Numerical solution yields the local structure of the condensate film profile and the Nusselt number for different values of the slip coefficient. Investigation of the results reveals that the condensate film on horizontal surfaces becomes thinner and the overall heat transfer rate is enhanced with an increase in the slip coefficient. In particular, a regression analysis of the results indicates a power law dependence of the Nusselt number on the non-dimensional slip coefficient with an exponent close to 0.5. Significant enhancement in phase change heat transfer follow from the modification of the local velocity profiles within the condensate film, especially in resulting from the additional momentum gain near the wall surfaces due to increases in slip effects.
This paper presents a technique that collapses existing experimental data of heat transfer in pipe flow of Newtonian and power law fluids into a single master curve. It also discusses the theoretical basis of heat, mass and momentum analogies and the implications of the present analysis to visualisations of turbulence.
In this numerical study on Rayleigh-Benard convection we seek to improve the heat transfer by passive means. To this end we introduce a single tilted conductive barrier centered in an aspect ratio one cell, breaking the symmetry of the geometry and to channel the ascending hot and descending cold plumes. We study the global and local heat transfer and the flow organization for Rayleigh numbers $10^5 leq Ra leq 10^9$ for a fixed Prandtl number of $Pr=4.3$. We find that the global heat transfer can be enhanced up to $18%$, and locally around $800%$. The averaged Reynolds number is always decreased when a barrier is introduced, even for those cases where the global heat transfer is increased. We map the entire parameter space spanned by the orientation and the size of a single barrier for $Ra=10^8$.
Cardiovascular diseases, specifically cerebral aneurysms, represent a major cause of morbidity and mortality, having a significant impact on the cost and overall status of health care. In the present work, we employ a haemorheological blood model originally proposed by Owens to investigate the haemodynamics of blood flow through an aneurytic channel. This constitutive equation for whole human blood is derived using ideas drawn from temporary polymer network theory to model the aggregation and disaggregation of erythrocytes in normal human blood at different shear rates. To better understand the effect of rheological models on the haemodynamics of blood flow in cerebral aneurysms we compare our numerical results with those obtained with other rheological models such as the Carreau-Yasuda (C-Y) model. The results show that the velocity profiles for the Newtonian and the Owens models are approximately similar but differ from those of the C-Y model. In order to stabilize our numerical simulations, we propose two new stabilization techniques, the so-called N-Owens and I-Owens methods. Employing the N-Owens stabilization method enables us to capture the effect of erythrocyte aggregation in blood flow through a cerebral aneurysm at higher Weissenberg (We) and Reynolds (Re) numbers than would otherwise be possible.