Do you want to publish a course? Click here

Understanding Stellar Contamination in Exoplanet Transmission Spectra as an Essential Step in Small Planet Characterization

110   0   0.0 ( 0 )
 Added by Daniel Apai Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transmission spectroscopy during planetary transits is expected to be a major source of information on the atmospheres of small (approximately Earth-sized) exoplanets in the next two decades. This technique, however, is intrinsically affected by stellar spectral contamination caused by the fact that stellar photo- and chromospheres are not perfectly homogeneous. Such stellar contamination will often reach or exceed the signal introduced by the planetary spectral features. Finding effective methods to correct stellar contamination -- or at least to quantify its possible range -- for the most important exoplanets is a necessary step for our understanding of exoplanet atmospheres. This will require significantly deepening our understanding of stellar heterogeneity, which is currently limited by the available data.



rate research

Read More

Transmission spectra probe the atmospheres of transiting exoplanets, but these observations are also subject to signals introduced by magnetic active regions on host stars. Here we outline scientific opportunities in the next decade for providing useful constraints on stellar photospheres and inform interpretations of transmission spectra of the smallest ($R<4,R_{odot}$) exoplanets. We identify and discuss four primary opportunities: (1) refining stellar magnetic active region properties through exoplanet crossing events; (2) spectral decomposition of active exoplanet host stars; (3) joint retrievals of stellar photospheric and planetary atmospheric properties with studies of transmission spectra; and (4) continued visual transmission spectroscopy studies to complement longer-wavelength studies from $textit{JWST}$. We make five recommendations to the Astro2020 Decadal Survey Committee: (1) identify the transit light source (TLS) effect as a challenge to precise exoplanet transmission spectroscopy and an opportunity ripe for scientific advancement in the coming decade; (2) include characterization of host star photospheric heterogeneity as part of a comprehensive research strategy for studying transiting exoplanets; (3) support the construction of ground-based extremely large telescopes (ELTs); (4) support multi-disciplinary research teams that bring together the heliophysics, stellar physics, and exoplanet communities to further exploit transiting exoplanets as spatial probes of stellar photospheres; and (5) support visual transmission spectroscopy efforts as complements to longer-wavelength observational campaigns with $textit{JWST}$.
The occurrence of a planet transiting in front of its host star offers the opportunity to observe the planets atmosphere filtering starlight. The fraction of occulted stellar flux is roughly proportional to the optically thick area of the planet, the extent of which depends on the opacity of the planets gaseous envelope at the observed wavelengths. Chemical species, haze, and clouds are now routinely detected in exoplanet atmospheres through rather small features in transmission spectra, i.e., collections of planet-to-star area ratios across multiple spectral bins and/or photometric bands. Technological advances have led to a shrinking of the error bars down to a few tens of parts per million (ppm) per spectral point for the brightest targets. The upcoming James Webb Space Telescope (JWST) is anticipated to deliver transmission spectra with precision down to 10 ppm. The increasing precision of measurements requires a reassessment of the approximations hitherto adopted in astrophysical models, including transit light curve models. Recently, it has been shown that neglecting the planets thermal emission can introduce significant biases in the transit depth measured with the JWST/Mid-InfraRed Instrument, integrated between 5 and 12 $mu$m. In this paper, we take a step forward by analyzing the effects of the approximation on transmission spectra over the 0.6-12 $mu$m wavelength range covered by various JWST instruments. We present open source software to predict the spectral bias, showing that, if not corrected, it may affect the inferred molecular abundances and thermal structure of some exoplanet atmospheres.
Precise and, if possible, accurate characterization of exoplanets cannot be dissociated from the characterization of their host stars. In this chapter we discuss different methods and techniques used to derive fundamental properties and atmospheric parameters of exoplanet-host stars. The main limitations, advantages and disadvantages, as well as corresponding typical measurement uncertainties of each method are presented.
We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple unstable gas giants. We previously showed that the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and debris disks. Here we present new simulations that show that this connection is qualitatively robust to changes in: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk. We discuss how variations in these parameters affect the evolution. Systems with equal-mass giant planets undergo the most violent instabilities, and these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass outermost giant planets have stable gaps between these planets that are frequently populated by planetesimals. Planetesimal belts between outer giant planets may affect debris disk SEDs. If Earth-mass seeds are present in outer planetesimal disks, the disks radially spread to colder temperatures. We argue that this may explain the very low frequency of > 1 Gyr-old solar-type stars with observed 24 micron excesses. Among the (limited) set of configurations explored, the best candidates for hosting terrestrial planets at ~1 AU are stars older than 0.1-1 Gyr with bright debris disks at 70 micron but with no currently-known giant planets. These systems combine evidence for rocky building blocks, with giant planet properties least likely to undergo destructive dynamical evolution. We predict an anti-correlation between debris disks and eccentric giant planets, and a positive correlation between debris disks and terrestrial planets.
Mostly multiband photometric transit observations have been used so far to retrieve broadband transmission spectra of transiting exoplanets in order to study their atmosphere. An alternative method has been proposed and has only been used once to recover transmission spectra using chromatic Rossiter-McLaughlin observations. Stellar activity has been shown to potentially imitate narrow and broadband features in the transmission spectra retrieved from multiband photometric observations; however, there has been no study regarding the influence of stellar activity on the retrieved transmission spectra through chromatic Rossiter-McLaughlin. In this study with the modified SOAP3.0 tool, we consider different types of stellar activity features (spots and plages), and we generated a large number of realistic chromatic Rossiter-McLaughlin curves for different types of planets and stars. We were then able to retrieve their transmission spectra to evaluate the impact of stellar activity on them. We find that chromatic Rossiter-McLaughlin observations are also not immune to stellar activity, which can mimic broadband features, such as Rayleigh scattering slope, in their retrieved transmission spectra. We also find that the influence is independent of the planet radius, orbital orientations, orbital period, and stellar rotation rate. However, more general simulations demonstrate that the probability of mimicking strong broadband features is lower than 25% and that can be mitigated by combining several Rossiter-McLaughlin observations obtained during several transits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا