Do you want to publish a course? Click here

Stellar activity consequence on the retrieved transmission spectra through chromatic Rossiter-McLaughlin observations

80   0   0.0 ( 0 )
 Added by Mahmoudreza Oshagh
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mostly multiband photometric transit observations have been used so far to retrieve broadband transmission spectra of transiting exoplanets in order to study their atmosphere. An alternative method has been proposed and has only been used once to recover transmission spectra using chromatic Rossiter-McLaughlin observations. Stellar activity has been shown to potentially imitate narrow and broadband features in the transmission spectra retrieved from multiband photometric observations; however, there has been no study regarding the influence of stellar activity on the retrieved transmission spectra through chromatic Rossiter-McLaughlin. In this study with the modified SOAP3.0 tool, we consider different types of stellar activity features (spots and plages), and we generated a large number of realistic chromatic Rossiter-McLaughlin curves for different types of planets and stars. We were then able to retrieve their transmission spectra to evaluate the impact of stellar activity on them. We find that chromatic Rossiter-McLaughlin observations are also not immune to stellar activity, which can mimic broadband features, such as Rayleigh scattering slope, in their retrieved transmission spectra. We also find that the influence is independent of the planet radius, orbital orientations, orbital period, and stellar rotation rate. However, more general simulations demonstrate that the probability of mimicking strong broadband features is lower than 25% and that can be mitigated by combining several Rossiter-McLaughlin observations obtained during several transits.



rate research

Read More

Multiband photometric transit observations (spectro-photometric) have been used mostly so far to retrieve broadband transmission spectra of transiting exoplanets in order to study their atmospheres. An alternative method was proposed, and has only been used once, to recover broadband transmission spectra using chromatic Rossiter-McLaughlin observations. We use the chromatic Rossiter-McLaughlin technique on archival and new observational data obtained with the HARPS and CARMENES instruments to retrieve transmission spectra of HD 189733b. The combined results cover the widest retrieved broadband transmission spectrum of an exoplanet obtained from ground-based observation. Our retrieved spectrum in the visible wavelength range shows the signature of a hazy atmosphere, and also includes an indication for the presence of sodium and potassium. These findings all agree with previous studies. The combined visible and near-infrared transmission spectrum exhibits a strong steep slope that may have several origins, such as a super-Rayleigh slope in the atmosphere of HD 189733b, an unknown systematic instrumental offset between the visible and near-infrared, or a strong stellar activity contamination. The host star is indeed known to be very active and might easily generate spurious features in the retrieved transmission spectra. Using our CARMENES observations, we assessed this scenario and place an informative constraint on some properties of the active regions of HD 189733. We demonstrate that the presence of starspots on HD 189733 can easily explain our observed strong slope in the broadband transmission spectrum.
Due to stellar rotation, the observed radial velocity of a star varies during the transit of a planet across its surface, a phenomenon known as the Rossiter-McLaughlin (RM) effect. The amplitude of the RM effect is related to the radius of the planet which, because of differential absorption in the planetary atmosphere, depends on wavelength. Therefore, the wavelength-dependent RM effect can be used to probe the planetary atmosphere. We measure for the first time the RM effect of the Earth transiting the Sun using a lunar eclipse observed with the ESO HARPS spectrograph. We analyze the observed RM effect at different wavelengths to obtain the transmission spectrum of the Earths atmosphere after the correction of the solar limb-darkening and the convective blueshift. The ozone Chappuis band absorption as well as the Rayleigh scattering features are clearly detectable with this technique. Our observation demonstrates that the RM effect can be an effective technique for exoplanet atmosphere characterization. Its particular asset is that photometric reference stars are not required, circumventing the principal challenge for transmission spectroscopy studies of exoplanet atmospheres using large ground-based telescopes.
AU Mic~b is a Neptune size planet on a 8.47-day orbit around the nearest pre-main sequence ($sim$20 Myr) star to the Sun, the bright (V=8.81) M dwarf AU Mic. The planet was preliminary detected in Doppler radial velocity time series and recently confirmed to be transiting with data from the TESS mission. AU Mic~b is likely to be cooling and contracting and might be accompanied by a second, more massive planet, in an outer orbit. Here, we present the observations of the transit of AU Mic~b using ESPRESSO on the VLT. We obtained a high-resolution time series of spectra to measure the Rossiter-McLaughlin effect and constrain the spin-orbit alignment of the star and planet, and simultaneously attempt to retrieve the planets atmospheric transmission spectrum. These observations allow us to study for the first time the early phases of the dynamical evolution of young systems. We apply different methodologies to derive the spin-orbit angle of AU Mic~b, and all of them retrieve values consistent with the planet being aligned with the rotation plane of the star. We determine a conservative spin-orbit angle $lambda$ value of $-2.96^{+10.44}_{-10.30}$, indicative that the formation and migration of the planets of the AU Mic system occurred within the disk. Unfortunately, and despite the large SNR of our measurements, the degree of stellar activity prevented us from detecting any features from the planetary atmosphere. In fact, our results suggest that transmission spectroscopy for recently formed planets around active young stars is going to remain very challenging, if at all possible, for the near future.
WASP-121b is one of the most studied Ultra-hot Jupiters: many recent analyses of its atmosphere report interesting features at different wavelength ranges. In this paper we analyze one transit of WASP-121b acquired with the high-resolution spectrograph ESPRESSO at VLT in 1-telescope mode, and one partial transit taken during the commissioning of the instrument in 4-telescope mode. We investigate the anomalous in-transit radial velocity curve and study the transmission spectrum of the planet. By analysing the in-transit radial velocities we were able to infer the presence of the atmospheric Rossiter-McLaughlin effect. We measured the height of the planetary atmospheric layer that correlates with the stellar mask (mainly Fe) to be 1.052$pm$0.015 Rp and we also confirmed the blueshift of the planetary atmosphere. By examining the planetary absorption signal on the stellar cross-correlation functions we confirmed the presence of a temporal variation of its blueshift during transit, which could be investigated spectrum-by-spectrum. We detected significant absorption in the transmission spectrum for Na, H, K, Li, CaII, Mg, and we certified their planetary nature by using the 2D tomographic technique. Particularly remarkable is the detection of Li, with a line contrast of $sim$0.2% detected at the 6$sigma$ level. With the cross-correlation technique we confirmed the presence of FeI, FeII, CrI and VI. H$alpha$ and CaII are present up to very high altitudes in the atmosphere ($sim$1.44 Rp and $sim$2 Rp, respectively), and also extend beyond the transit-equivalent Roche lobe radius of the planet. These layers of the atmosphere have a large line broadening that is not compatible with being caused by the tidally-locked rotation of the planet alone, and could arise from vertical winds or high-altitude jets in the evaporating atmosphere.
One of the most powerful methods used to estimate sky-projected spin-orbit angles of exoplanetary systems is through a spectroscopic transit observation known as the Rossiter-McLaughlin (RM) effect. So far mostly single RM observations have been used to estimate the spin-orbit angle, and thus there have been no studies regarding the variation of estimated spin-orbit angle from transit to transit. Stellar activity can alter the shape of photometric transit light curves and in a similar way they can deform the RM signal. In this paper we discuss several RM observations, obtained using the HARPS spectrograph, of known transiting planets that all transit extremely active stars, and by analyzing them individually we assess the variation in the estimated spin-orbit angle. Our results reveal that the estimated spin-orbit angle can vary significantly (up to 42 degrees) from transit to transit, due to variation in the configuration of stellar active regions over different nights. This finding is almost two times larger than the expected variation predicted from simulations. We could not identify any meaningful correlation between the variation of estimated spin-orbit angles and the stellar magnetic activity indicators. We also investigated two possible approaches to mitigate the stellar activity influence on RM observations. The first strategy was based on obtaining several RM observations and folding them to reduce the stellar activity noise. Our results demonstrated that this is a feasible and robust way to overcome this issue. The second approach is based on acquiring simultaneous high-precision short-cadence photometric transit light curves using TRAPPIST/SPECULOOS telescopes, which provide more information about the stellar active regions properties and allow a better RM modeling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا