Do you want to publish a course? Click here

Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings

109   0   0.0 ( 0 )
 Added by Kevin Chen
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a method for generating colored 3D shapes from natural language. To this end, we first learn joint embeddings of freeform text descriptions and colored 3D shapes. Our model combines and extends learning by association and metric learning approaches to learn implicit cross-modal connections, and produces a joint representation that captures the many-to-many relations between language and physical properties of 3D shapes such as color and shape. To evaluate our approach, we collect a large dataset of natural language descriptions for physical 3D objects in the ShapeNet dataset. With this learned joint embedding we demonstrate text-to-shape retrieval that outperforms baseline approaches. Using our embeddings with a novel conditional Wasserstein GAN framework, we generate colored 3D shapes from text. Our method is the first to connect natural language text with realistic 3D objects exhibiting rich variations in color, texture, and shape detail. See video at https://youtu.be/zraPvRdl13Q



rate research

Read More

We present NaturalOWL, a natural language generation system that produces texts describing individuals or classes of OWL ontologies. Unlike simpler OWL verbalizers, which typically express a single axiom at a time in controlled, often not entirely fluent natural language primarily for the benefit of domain experts, we aim to generate fluent and coherent multi-sentence texts for end-users. With a system like NaturalOWL, one can publish information in OWL on the Web, along with automatically produced corresponding texts in multiple languages, making the information accessible not only to computer programs and domain experts, but also end-users. We discuss the processing stages of NaturalOWL, the optional domain-dependent linguistic resources that the system can use at each stage, and why they are useful. We also present trials showing that when the domain-dependent llinguistic resources are available, NaturalOWL produces significantly better texts compared to a simpler verbalizer, and that the resources can be created with relatively light effort.
In Natural Language Generation (NLG), End-to-End (E2E) systems trained through deep learning have recently gained a strong interest. Such deep models need a large amount of carefully annotated data to reach satisfactory performance. However, acquiring such datasets for every new NLG application is a tedious and time-consuming task. In this paper, we propose a semi-supervised deep learning scheme that can learn from non-annotated data and annotated data when available. It uses an NLG and a Natural Language Understanding (NLU) sequence-to-sequence models which are learned jointly to compensate for the lack of annotation. Experiments on two benchmark datasets show that, with limited amount of annotated data, the method can achieve very competitive results while not using any pre-processing or re-scoring tricks. These findings open the way to the exploitation of non-annotated datasets which is the current bottleneck for the E2E NLG system development to new applications.
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
Visual identification of individual animals that bear unique natural body markings is an important task in wildlife conservation. The photo databases of animal markings grow larger and each new observation has to be matched against thousands of images. Existing photo-identification solutions have constraints on image quality and appearance of the pattern of interest in the image. These constraints limit the use of photos from citizen scientists. We present a novel system for visual re-identification based on unique natural markings that is robust to occlusions, viewpoint and illumination changes. We adapt methods developed for face re-identification and implement a deep convolutional neural network (CNN) to learn embeddings for images of natural markings. The distance between the learned embedding points provides a dissimilarity measure between the corresponding input images. The network is optimized using the triplet loss function and the online semi-hard triplet mining strategy. The proposed re-identification method is generic and not species specific. We evaluate the proposed system on image databases of manta ray belly patterns and humpback whale flukes. To be of practical value and adopted by marine biologists, a re-identification system needs to have a top-10 accuracy of at least 95%. The proposed system achieves this performance standard.
Learning from image-text data has demonstrated recent success for many recognition tasks, yet is currently limited to visual features or individual visual concepts such as objects. In this paper, we propose one of the first methods that learn from image-sentence pairs to extract a graphical representation of localized objects and their relationships within an image, known as scene graph. To bridge the gap between images and texts, we leverage an off-the-shelf object detector to identify and localize object instances, match labels of detected regions to concepts parsed from captions, and thus create pseudo labels for learning scene graph. Further, we design a Transformer-based model to predict these pseudo labels via a masked token prediction task. Learning from only image-sentence pairs, our model achieves 30% relative gain over a latest method trained with human-annotated unlocalized scene graphs. Our model also shows strong results for weakly and fully supervised scene graph generation. In addition, we explore an open-vocabulary setting for detecting scene graphs, and present the first result for open-set scene graph generation. Our code is available at https://github.com/YiwuZhong/SGG_from_NLS.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا