Do you want to publish a course? Click here

Kinetic Theory of Transport Driven Current in Centrally fuelled Plasmas

132   0   0.0 ( 0 )
 Added by Renaud Gueroult
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

When a steady-state cylindrical plasma discharge is centrally fuelled, the collisionless radial electron flux is canonically coupled to an axial current. The identification and analysis of this transport driven current, previously reported in collisionless simulations [W. J. Nunan and J. M. Dawson, Phys. Rev. Lett. $mathbf{73}$, 1628 (1994)], is addressed analytically and extended to the collisional regime by means of first-principles kinetic models. Collisionless radial transport is described with the standard quasilinear model and collisional velocity anisotropy relaxation with the Landau kinetic equation. When trapped particles corrections are taken into account, the solution of this kinetic model provides the analytical expression for the transport driven current in a centrally fuelled steady-state tokamak as a function of the thermonuclear power and discharge parameters. For ITER type discharges, with central fuelling, a current of about one mega-ampere is predicted by this first-principles analytical kinetic model.



rate research

Read More

The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincare reduction theory is used to show that the neutral Vlasov kinetic theory possesses a variational formulation in both Lagrangian and Eulerian coordinates. By construction, the model recovers all collisionless neutral models employed in plasma simulations. Then, comparisons between the neutral Vlasov system and hybrid kinetic-fluid models are presented in the linear regime.
A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the Auto-Regressive Integrated Moving Average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.
Solid-density plasmas driven by intense x-ray free-electron laser (XFEL) radiation are seeded by sources of non-thermal photoelectrons and Auger electrons that ionize and heat the target via collisions. Simulation codes that are commonly used to model such plasmas, such as collisional-radiative (CR) codes, typically assume a Maxwellian distribution and thus instantaneous thermalization of the source electrons. In this study, we present a detailed description and initial applications of a collisional particle-in-cell code, PICLS, that has been extended with a self-consistent radiation transport model and Monte-Carlo models for photoionization and KLL Auger ionization, enabling the fully kinetic simulation of XFEL-driven plasmas. The code is used to simulate two experiments previously performed at the Linac Coherent Light Source investigating XFEL-driven solid-density Al plasmas. It is shown that PICLS-simulated pulse transmissions using the Ecker-Kroll continuum-lowering model agree much better with measurements than do simulations using the Stewart-Pyatt model. Good quantitative agreement is also found between the time-dependent PICLS results and those of analogous simulations by the CR code SCFLY, which was used in the analysis of the experiments to accurately reproduce the observed K{alpha} emissions and pulse transmissions. Finally, it is shown that the effects of the non-thermal electrons are negligible for the conditions of the particular experiments under investigation.
Coulomb collisions in plasmas are typically modeled using the Boltzmann collision operator, or its variants, which apply to weakly magnetized plasmas in which the typical gyroradius of particles significantly exceeds the Debye length. Conversely, ONeil has developed a kinetic theory to treat plasmas that are so strongly magnetized that the typical gyroradius of particles is much smaller than the distance of closest approach in a binary collision. Here, we develop a generalized collision operator that applies across the full range of magnetization strength. To demonstrate novel physics associated with strong magnetization, it is used to compute the friction force on a massive test charge. In addition to the traditional stopping power component, this is found to exhibit a transverse component that is perpendicular to both the velocity and Lorentz force vectors in the strongly magnetized regime, as was predicted recently using linear response theory. Good agreement is found between the collision theory and linear response theory in the regime in which both apply, but the new collision theory also applies to stronger magnetization strength regimes than the linear response theory is expected to apply in.
we report the identification of a localised current structure inside the JET plasma. It is a field aligned closed helical ribbon, carrying current in the same direction as the background current profile (co-current), rotating toroidally with the ion velocity (co-rotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first ELM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا