Do you want to publish a course? Click here

Kinetic modeling of x-ray laser-driven solid Al plasmas via particle-in-cell simulation

333   0   0.0 ( 0 )
 Added by Ryan Royle
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solid-density plasmas driven by intense x-ray free-electron laser (XFEL) radiation are seeded by sources of non-thermal photoelectrons and Auger electrons that ionize and heat the target via collisions. Simulation codes that are commonly used to model such plasmas, such as collisional-radiative (CR) codes, typically assume a Maxwellian distribution and thus instantaneous thermalization of the source electrons. In this study, we present a detailed description and initial applications of a collisional particle-in-cell code, PICLS, that has been extended with a self-consistent radiation transport model and Monte-Carlo models for photoionization and KLL Auger ionization, enabling the fully kinetic simulation of XFEL-driven plasmas. The code is used to simulate two experiments previously performed at the Linac Coherent Light Source investigating XFEL-driven solid-density Al plasmas. It is shown that PICLS-simulated pulse transmissions using the Ecker-Kroll continuum-lowering model agree much better with measurements than do simulations using the Stewart-Pyatt model. Good quantitative agreement is also found between the time-dependent PICLS results and those of analogous simulations by the CR code SCFLY, which was used in the analysis of the experiments to accurately reproduce the observed K{alpha} emissions and pulse transmissions. Finally, it is shown that the effects of the non-thermal electrons are negligible for the conditions of the particular experiments under investigation.



rate research

Read More

The interaction of two lasers with a difference frequency near that of the ambient plasma frequency produces beat waves that can resonantly accelerate thermal electrons. These beat waves can be used to drive electron current and thereby embed magnetic fields into the plasma [D. R. Welch et al., Phys. Rev. Lett. 109, 225002 (2012)]. In this paper, we present two-dimensional particle-in-cell simulations of the beat-wave current-drive process over a wide range of angles between the injected lasers, laser intensities, and plasma densities. We discuss the application of this technique to the magnetization of dense plasmas, motivated in particular by the problem of forming high-beta plasma targets in a standoff manner for magneto-inertial fusion. The feasibility of a near-term experiment embedding magnetic fields using lasers with micron-scale wavelengths into a $sim 10^{18}$-cm$^{-3}$-density plasma is assessed.
The propagation of intense laser pulses and the generation of high energy electrons from the underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power and a critical power of relativistic self-focusing is the optimal value, it propagates stably and electrons have maximum energies.
We studied the hard x-ray emission and the K-alpha x-ray conversion efficiency produced by 60 fs high contrast frequency doubled Ti: sapphire laser pulse focused on Cu foil target. Cu K-alpha photon emission obtained with second harmonic laser pulse is more intense than the case of fundamental laser pulse. The Cu K-alpha conversion efficiency shows strong dependence on laser nonlinearly skewed pulse shape and reaches the maximum value 4x10-4 with 100 fs negatively skewed pulse. It shows the electron spectrum shaping contribute to the increase of conversion efficiency. Particle-in-cell simulations demonstrates that the application of high contrast laser pulses will be an effective method to optimize the x-ray emission, via the Enhanced Vacuum Heating mechanism.
When a steady-state cylindrical plasma discharge is centrally fuelled, the collisionless radial electron flux is canonically coupled to an axial current. The identification and analysis of this transport driven current, previously reported in collisionless simulations [W. J. Nunan and J. M. Dawson, Phys. Rev. Lett. $mathbf{73}$, 1628 (1994)], is addressed analytically and extended to the collisional regime by means of first-principles kinetic models. Collisionless radial transport is described with the standard quasilinear model and collisional velocity anisotropy relaxation with the Landau kinetic equation. When trapped particles corrections are taken into account, the solution of this kinetic model provides the analytical expression for the transport driven current in a centrally fuelled steady-state tokamak as a function of the thermonuclear power and discharge parameters. For ITER type discharges, with central fuelling, a current of about one mega-ampere is predicted by this first-principles analytical kinetic model.
Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counter-streaming, ablatively-driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP laser system. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا