Do you want to publish a course? Click here

Clear and Cloudy Exoplanet Forecasts for JWST: Maps, Retrieved Composition and Constraints on Formation with MIRI and NIRCam

78   0   0.0 ( 0 )
 Added by Everett Schlawin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The James Webb Space Telescope (JWST) will measure exoplanet transmission and eclipse spectroscopy at un-precedented precisions to better understand planet structure, dynamics, chemistry and formation. These are essential tools on the march towards biosignature searches on potentially habitable planets. We explore a range of exoplanet atmospheric conditions and forecast the expected results with JWST. We take realistic CHIMERA models that match existing Spitzer and HST results and simulate the spectra achievable with the JWST MIRI + NIRCam Guaranteed Time Observations (GTO) survey. We then retrieve atmospheric parameters from these spectra to estimate the precision to which the planets atmospheric compositions can be measured. We find that emission spectra have well-constrained unimodal solutions but transmission spectra near 10X solar abundance and solar C/O ratios can suffer from bimodal solutions. Broad wavelength coverage as well as higher precision data can resolve bimodal solutions and provide dramatically better atmospheric parameter constraints. We find that metallicities can be measured to within 20% to 170%, which approaches the precisions on Solar System planets, and C/O ratios can be constrained to ~10% to 60%, assuming that observers can leverage short wavelength data to select the correct solution from the bimodal posteriors. These compositional precisions are sufficient to validate or refute predictions from disk formation models on final atmospheric abundances as long as their history is not erased by planet evolution processes. We also show the extent to which eclipse mapping with JWST is possible on our brightest system HD 189733 b.



rate research

Read More

The Mid-Infrared instrument (MIRI) on board the James Webb Space Telescope will perform the first ever characterization of young giant exoplanets observed by direct imaging in the 5-28 microns spectral range. This wavelength range is key for both determining the bolometric luminosity of the cool known exoplanets and for accessing the strongest ammonia bands. In conjunction with shorter wavelength observations, MIRI will enable a more accurate characterization of the exoplanetary atmospheric properties. Here we consider a subsample of the currently known exoplanets detected by direct imaging and we discuss their detectability with MIRI, either using the coronagraphic or the spectroscopic modes. By using the Exo-REM atmosphere model we calculate the mid-infrared emission spectra of fourteen exoplanets, and we simulate MIRI coronagraphic or spectroscopic observations. Specifically we analyze four coronagraphic observational setups, which depend on (i) the target-star and reference-star offset (0, 3, 14 mas), (ii) the wave-front-error (130, 204 nm rms), (iii) the telescope jitter amplitude (1.6, 7 mas). We then determine the signal-to-noise and integration time values for the coronagraphic targets whose planet-to-star contrasts range from 3.9 to 10.1 mag. We conclude that all the MIRI targets should be observable with different degrees of difficulty, which depends on the final in-flight instrument performances. Furthermore, we test for detection of ammonia in the atmosphere of the coolest targets. Finally, we present the case of HR 8799 b to discuss what MIRI observations can bring to the knowledge of a planetary atmosphere, either alone or in combination with shorter wavelength observations.
We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $lambda = 1 - 11$ $mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $lambda = 1 - 2.5$ $mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong temperature
The James Webb Space Telescope (JWST) will offer the first opportunity to characterize terrestrial exoplanets with sufficient precision to identify high mean molecular weight atmospheres, and TRAPPIST-1s seven known transiting Earth-sized planets are particularly favorable targets. To assist community preparations for JWST, we use simulations of plausible post-ocean-loss and habitable environments for the TRAPPIST-1 exoplanets, and test simulations of all bright object time series spectroscopy modes and all MIRI photometry filters to determine optimal observing strategies for atmospheric detection and characterization using both transmission and emission observations. We find that transmission spectroscopy with NIRSpec Prism is optimal for detecting terrestrial, CO2 containing atmospheres, potentially in fewer than 10 transits for all seven TRAPPIST-1 planets, if they lack high altitude aerosols. If the TRAPPIST-1 planets possess Venus-like H2SO4 aerosols, up to 12 times more transits may be required to detect atmospheres. We present optimal instruments and observing modes for the detection of individual molecular species in a given terrestrial atmosphere and an observational strategy for discriminating between evolutionary states. We find that water may be prohibitively difficult to detect in both Venus-like and habitable atmospheres due to its presence lower in the atmosphere where transmission spectra are less sensitive. Although the presence of biogenic O2 and O3 will be extremely challenging to detect, abiotically produced oxygen from past ocean loss may be detectable for all seven TRAPPIST-1 planets via O2-O2 collisionally-induced absorption at 1.06 and 1.27 microns, or via NIR O3 features for the outer three planets. Our results constitute a suite of hypotheses on the nature and detectability of highly-evolved terrestrial exoplanet atmospheres that may be tested with JWST.
124 - Brianna Lacy , Adam Burrows 2020
JWST will provide moderate resolution transit spectra with continuous wavelength coverage from the optical to the mid-infrared for the first time. In this paper, we illustrate how different aerosol species, size-distributions, and spatial distributions encode information in JWST transit spectra. We use the transit spectral modeling code METIS, along with Mie theory and several flexible treatments of aerosol size and spatial distributions to perform parameter sensitivity studies, calculate transit contribution functions, compute Jacobians, and retrieve parameters with Markov Chain Monte Carlo. The broader wavelength coverage of JWST will likely encompass enough non-gray aerosol behavior to recover information about the species and size-distribution of particles, especially if distinct resonance features arising from the aerosols are present. Within the JWST wavelength range, the optical and mid-infrared typically provide information about 0.1-1 $mu$m sized aerosols, while the near-infrared to mid-infrared wavelengths usually provide information about gaseous absorption, even if aerosols are present. Strong gaseous absorption features in the infrared often remain visible, even when clouds and hazes are flattening the optical and NIR portion of the spectrum that is currently observable. For some combinations of aerosol properties, temperature, and surface gravity, one can make a precise measure of metallicity despite the presence of aerosols, but more often the retrieved metallicity of a cloudy or hazy atmosphere has significantly lower precision than for a clear atmosphere with otherwise similar properties. Future efforts to securely link aerosol properties to atmospheric metallicity and temperature in a physically motivated manner will ultimately enable a robust physical understanding of the processes at play in cloudy, hazy exoplanet atmospheres.
The JWST MIRI instrument will revolutionize extragalactic astronomy with unprecedented sensitivity and angular resolution in mid-IR. Here, we assess the potential of MIRI photometry to constrain galaxy properties in the Cosmic Evolution Early Release Science (CEERS) survey. We derive estimated MIRI fluxes from the spectral energy distributions (SEDs) of real sources that fall in a planned MIRI pointing. We also obtain MIRI fluxes for hypothetical AGN-galaxy mixed models varying the AGN fractional contribution to the total IR luminosity ($rm frac_{AGN}$). Based on these model fluxes, we simulate CEERS imaging (3.6-hour exposure) in 6 bands from F770W to F2100W using MIRISIM, and reduce these data using JWST PIPELINE. We perform PSF-matched photometry with TPHOT, and fit the source SEDs with X-CIGALE, simultaneously modeling photometric redshift and other physical properties. Adding the MIRI data, the accuracy of both redshift and $rm frac_{AGN}$ is generally improved by factors of $gtrsim 2$ for all sources at $zlesssim 3$. Notably, for pure-galaxy inputs ($rm frac_{AGN}=0$), the accuracy of $rm frac_{AGN}$ is improved by $sim 100$ times thanks to MIRI. The simulated CEERS MIRI data are slightly more sensitive to AGN detections than the deepest X-ray survey, based on the empirical $L_{rm X}$-$L_{rm 6mu m}$ relation. Like X-ray observations, MIRI can also be used to constrain the AGN accretion power (accuracy $approx 0.3$ dex). Our work demonstrates that MIRI will be able to place strong constraints on the mid-IR luminosities from star formation and AGN, and thereby facilitate studies of the galaxy/AGN co-evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا