Do you want to publish a course? Click here

Glassy Dynamics in a heavy ion irradiated NbSe2 crystal

54   0   0.0 ( 0 )
 Added by Serena Eley
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fascination with glassy states has persisted since Fisher introduced the vortex-glass as a new thermodynamic phase that is a true superconductor that lacks conventional long-range order. Though Fishers original model considered point disorder, it was later predicted that columnar defects (CDs) could also induce glassiness -- specifically, a Bose-glass phase. In YBa$_2$Cu$_3$O$_{7-x}$ (YBCO), glassy states can cause distinct behavior in the temperature ($T$) dependent rate of thermally activated vortex motion ($S$). The vortex-glass state produces a plateau in $S(T)$ whereas a Bose-glass can transition into a state hosting vortex excitations called double-kinks that can expand, creating a large peak in $S(T)$. Although glass phases have been well-studied in YBCO, few studies exist of other materials containing CDs that could contribute to distinguishing universal behavior. Here, we report on the effectiveness of CDs tilted ~30$deg$ from the c-axis in reducing $S$ in a NbSe$_2$ crystal. The magnetization is 5 times higher and $S$ is minimized when the field is parallel to the defects versus aligned with the c-axis. We see signatures of glassiness in both field orientations, but do not observe a peak in $S(T)$ nor a plateau at values observed in YBCO. We discuss the possibility that competing disorder induces a field-orientation-driven transition from a Bose-glass to an anisotropic glass involving both point and columnar disorder.



rate research

Read More

Complementary Neutron Spin Echo and X-ray experiments and Molecular Dynamics simulations have been performed on difluorotetrachloroethane (CFCl2-CFCl2) glassy crystal. Static, single-molecule reorientational dynamics and collective dynamics properties are investigated. The orientational disorder is characterized at different temperatures and a change in nature of rotational dynamics is observed. We show that dynamics can be described by some scaling predictions of the Mode Coupling Theory (MCT) and a critical temperature $T_{c}$ is determined. Our results also confirm the strong analogy between molecular liquids and plastic crystals for which $alpha$-relaxation times and non-ergodicity parameters are controlled by the non trivial static correlations as predicted by MCT.
We report the fabrication of few hundred microns long, hundreds of nanometers wide and 30 nm thick meanders made from YBa2CU3O7. Thin films protected by a 8 nm-thick Ce02 cap layer have been patterned by high energy (a few tens of keV) oxygen ion irradiation through photoresist masks. DC and RF characterizations outline good superconducting properties of nano-meanders that could be used as Superconducting Single Photon Detectors (SSPD). By mean of a resonant method, their inductance, which mainly sets the maximum speed of these devices, has been measured on a wide range of temperature. It compares favorably with expected values calculated from the geometry of the meanders and the known London penetration depth in YBa2CU3O7.
We designed, fabricated and tested short one dimensional arrays of masked ion-irradiated YBa$_2$Cu$_3$O$_7$ Josephson junctions (JJ) embedded into log-periodic spiral antennas. Our arrays consist of 4 or 8 junctions separated either by 960~nm or 80~nm long areas of undamaged YBCO. Samples with distanced junctions and with closely spaced junctions showed qualitatively different behaviors. Well separated arrays demonstrated giant Shapiro steps in the hundreds-GHz band at 66K and were tested as Josephson mixers with improved impedance matching. All closely spaced arrays behaved as one junction with a lower superconducting transition temperature, hence forming a single weak link on distances up to 880~nm. Such design opens a new way to increase the I$_{c}$R$_{N}$ product of ion-irradiated junctions and we speculate that the phenomena and physics behind it might be similar to the so-called giant Josephson coupling observed in cuprates.
Superconductivity has been first observed in TlNi$_2$Se$_2$ at T$_C$=3.7 K and appears to involve heavy electrons with an effective mass $m^*$=14$sim$20 $m_b$, as inferred from the normal state electronic specific heat and the upper critical field, H_${C2}$(T). Although the zero-field electronic specific heat data, $C_{es}(T)$, in low temperatures (T < 1/4 T$_C$) can be fitted with a gap BCS model, indicating that TlNi$_2$Se$_2$ is a fully gapped superconductor, the two-gap BCS model presents the best fit to all the $C_{es}(T)$ data below $T_C$. It is also found that the electronic specific heat coefficient in the mixed state, $gamma_N(H)$, exhibits a textit{H}$^{1/2}$ behavior, which was also observed in some textit{s}-wave superconductors, although once considered as a common feature of the textit{d}-wave superconductors. Anyway, these results indicate that TlNi$_2$Se$_2$, as a non-magnetic analogue of TlFe$_x$Se$_2$ superconductor, is a multiband superconductor of heavy electron system.
In this report, we comprehensively study the effect of H$^+$ irradiation on the critical current density, $J_c$, and vortex pinning in FeSe single crystal. It is found that the value of $J_c$ for FeSe is enhanced more than twice after 3-MeV H$^+$ irradiation. The scaling analyses of the vortex pinning force based on the Dew-Hughes model reveal that the H$^+$ irradiation successfully introduce point pinning centers into the crystal. We also find that the vortex creep rates are strongly suppressed after irradiation. Detailed analyses of the critical current dependent pinning energy based on the collective creep theory and extend Maleys method show that the H$^+$ irradiation enhances the value of $J_c$ before the flux creep, and also reduces the size of flux bundle, which will further reduce the field dependence of $J_c$ due to vortex motion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا