Do you want to publish a course? Click here

Free Energies and the Reversed HLS Inequality

62   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We prove reversed Hardy-Littlewood-Sobolev inequalities by carefully studying the natural associated free energies with direct methods of calculus of variations. Tightness is obtained by a dyadic argument, which quantifies the relative strength of the entropy functional versus the interaction energy. The existence of optimizers is shown in the class of $prob$. With respect to their regularity, we study conditions for optimizers to be bounded functions. In a related model, we show the condensation phenomena, which suggests that optimizers are not in general regular.



rate research

Read More

134 - Jingbo Dou , Meijun Zhu 2013
The classical sharp Hardy-Littlewood-Sobolev inequality states that, for $1<p, t<infty$ and $0<lambda=n-alpha <n$ with $ 1/p +1 /t+ lambda /n=2$, there is a best constant $N(n,lambda,p)>0$, such that $$ |int_{mathbb{R}^n} int_{mathbb{R}^n} f(x)|x-y|^{-lambda} g(y) dx dy|le N(n,lambda,p)||f||_{L^p(mathbb{R}^n)}||g||_{L^t(mathbb{R}^n)} $$ holds for all $fin L^p(mathbb{R}^n), gin L^t(mathbb{R}^n).$ The sharp form is due to Lieb, who proved the existence of the extremal functions to the inequality with sharp constant, and computed the best constant in the case of $p=t$ (or one of them is 2). Except that the case for $pin ((n-1)/n, n/alpha)$ (thus $alpha$ may be greater than $n$) was considered by Stein and Weiss in 1960, there is no other result for $alpha>n$. In this paper, we prove that the reversed Hardy-Littlewood-Sobolev inequality for $0<p, t<1$, $lambda<0$ holds for all nonnegative $fin L^p(mathbb{R}^n), gin L^t(mathbb{R}^n).$ For $p=t$, the existence of extremal functions is proved, all extremal functions are classified via the method of moving sphere, and the best constant is computed.
179 - Wei Dai , Yunyun Hu , Zhao Liu 2020
In this paper, we prove the following reversed Hardy-Littlewood-Sobolev inequality with extended kernel begin{equation*} int_{mathbb{R}_+^n}int_{partialmathbb{R}^n_+} frac{x_n^beta}{|x-y|^{n-alpha}}f(y)g(x) dydxgeq C_{n,alpha,beta,p}|f|_{L^{p}(partialmathbb{R}_+^n)} |g|_{L^{q}(mathbb{R}_+^n)} end{equation*} for any nonnegative functions $fin L^{p}(partialmathbb{R}_+^n)$ and $gin L^{q}(mathbb{R}_+^n)$, where $ngeq2$, $p, qin (0,1)$, $alpha>n$, $0leqbeta<frac{alpha-n}{n-1}$, $p>frac{n-1}{alpha-1-(n-1)beta}$ such that $frac{n-1}{n}frac{1}{p}+frac{1}{q}-frac{alpha+beta-1}{n}=1$. We prove the existence of extremal functions for the above inequality. Moreover, in the conformal invariant case, we classify all the extremal functions and hence derive the best constant via a variant method of moving spheres, which can be carried out emph{without lifting the regularity of Lebesgue measurable solutions}. Finally, we derive the sufficient and necessary conditions for existence of positive solutions to the Euler-Lagrange equations by using Pohozaev identities. Our results are inspired by Hang, Wang and Yan cite{HWY}, Dou, Guo and Zhu cite{DGZ} for $alpha<n$ and $beta=1$, and Gluck cite{Gl} for $alpha<n$ and $betageq0$.
We consider a Cahn-Hilliard equation which is the conserved gradient flow of a nonlocal total free energy functional. This functional is characterized by a Helmholtz free energy density, which can be of logarithmic type. Moreover, the spatial interactions between the different phases are modeled by a singular kernel. As a consequence, the chemical potential $mu$ contains an integral operator acting on the concentration difference $c$, instead of the usual Laplace operator. We analyze the equation on a bounded domain subject to no-flux boundary condition for $mu$ and by assuming constant mobility. We first establish the existence and uniqueness of a weak solution and some regularity properties. These results allow us to define a dissipative dynamical system on a suitable phase-space and we prove that such a system has a (connected) global attractor. Finally, we show that a Neumann-like boundary condition can be recovered for $c$, provided that it is supposed to be regular enough.
We present a new proof of the sphere covering inequality in the spirit of comparison geometry, and as a byproduct we find another sphere covering inequality which can be viewed as the dual of the original one. We also prove sphere covering inequalities on surfaces satisfying general isoperimetric inequalities, and discuss their applications to elliptic equations with exponential nonlinearities in dimension two. The approach in this paper extends, improves, and unifies several inequalities about solutions of elliptic equations with exponential nonlinearities.
276 - P.W.Y. Lee 2015
We establish a version of the Harnack inequality for the Jordan-Kinderlehrer-Otto scheme of the heat equation on the flat torus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا