No Arabic abstract
The Intermediate Mass Fragments emission probability from Projectile-Like Fragment break-up in semi-peripheral reactions has been measured in collisions of $^{124}$Xe projectiles with two different targets of $^{64}$Ni and $^{64}$Zn at the laboratory energy of 35 amev. The two colliding systems differ only for the target atomic number Z and, consequently, for the Isospin $N/Z$ ratio. An enhancement of Intermediate Mass Fragments production for the neutron rich $^{64}$Ni target, with respect to the $^{64}$Zn, is found. In the case of one Intermediate Mass Fragment emission, the contributions of the dynamical and statistical emissions have been evaluated, showing that the increase of the effect above is due to an enhancement of the dynamical emission probability, especially for heavy IMFs (Z$gtrsim$ 7). This proves an influence of the target Isospin on inducing the dynamical fragment production from Projectile-Like Fragment break-up. In addition, a comparison of the Xe+Ni,Zn results with the previously studied $^{112,124}Sn+^{58,64}Ni$ systems is discussed in order to investigate the influence of the projectile Isospin alone and to disentangle between Isospin effects against system-size effects on the emission probability. These comparisons suggest that the prompt-dynamical emission is mainly ruled by the $N/Z$ content of, both, projectile and target; for the cases here investigated, the influence of the system size on the dynamical emission probability can be excluded.
The fragmentation of the quasi-projectile is studied with the INDRA multidetector for different colliding systems and incident energies in the Fermi energy range. Different experimental observations show that a large part of the fragmentation is not compatible with the statistical fragmentation of a fully equilibrated nucleus. The study of internal correlations is a powerful tool, especially to evidence entrance channel effects. These effects have to be included in the theoretical descriptions of nuclear multifragmentation.
Isotopically resolved fragments with Z<=20 have been studied with high resolution telescopes in a test run for the FAZIA collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich (124Sn) and a n-poor (112Sn) target. The fragments, detected close to the grazing angle, are mainly emitted from the phase-space region of the projectile. The fragment isotopic content clearly depends on the n-richness of the target and it is a direct evidence of isospin diffusion between projectile and target. The observed enhanced neutron richness of light fragments emitted from the phase-space region close to the center of mass of the system can be interpreted as an effect of isospin drift in the diluted neck region.
Isospin diffusion is probed as a function of the dissipated energy by studying two systems $^{58}$Ni+$^{58}$Ni and $^{58}$Ni+$^{197}$Au, over the incident energy range 52-74AM. Experimental data are compared with the results of a microscopic transport model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 AM{} is estimated to 130$pm$10 fm/$c$.
We study isospin effects in semi-peripheral collisions above the Fermi energy by considering the symmetric $^{58}Ni$ + $^{58}Ni$ and the asymmetric reactions $^{58}Ni$ + $^{197}Au$ over the incident energy range 52-74 A MeV. A microscopic transport model with two different parameterizations of the symmetry energy term is used to investigate the isotopic content of pre-equilibrium emission and the N/Z diffusion process. Simulations are also compared to experimental data obtained with the INDRA array and bring information on the degree of isospin equilibration observed in Ni + Au collisions. A better overall agreement between data and simulations is obtained when using a symmetry term which linearly increases with nuclear density.
The $^{58}Ni+^{58}Ni$ reaction at 30 MeV/nucleon has been experimentally investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali del Sud. In midperipheral collisions the production of massive fragments (4$le$Z$le$12), consistent with the statistical fragmentation of the projectile-like residue and the dynamical formation of a neck, joining projectile-like and target-like residues, has been observed. The fragments coming from these different processes differ both in charge distribution and isotopic composition. In particular it is shown that these mechanisms leading to fragment production act contemporarily inside the same event.