Do you want to publish a course? Click here

Topological invariants in dissipative extensions of the Su-Schrieffer-Heeger model

57   0   0.0 ( 0 )
 Added by Marcel Wagner
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate dissipative extensions of the Su-Schrieffer-Heeger model with regard to different approaches of modeling dissipation. In doing so, we use two distinct frameworks to describe the gain and loss of particles, one uses Lindblad operators within the scope of Lindblad master equations, the other uses complex potentials as an effective description of dissipation. The reservoirs are chosen in such a way that the non-Hermitian complex potentials are $mathcal{PT}$-symmetric. From the effective theory we extract a state which has similar properties as the non-equilibrium steady state following from Lindblad master equations with respect to lattice site occupation. We find considerable similarities in the spectra of the effective Hamiltonian and the corresponding Liouvillean. Further, we generalize the concept of the Zak phase to the dissipative scenario in terms of the Lindblad description and relate it to the topological phases of the underlying Hermitian Hamiltonian.



rate research

Read More

99 - Simon Lieu 2017
We address the conditions required for a $mathbb{Z}$ topological classification in the most general form of the non-Hermitian Su-Schrieffer-Heeger (SSH) model. Any chirally-symmetric SSH model will possess a conjugated-pseudo-Hermiticity which we show is responsible for a quantized complex Berry phase. Consequently, we provide the first example where the complex Berry phase of a band is used as a quantized invariant to predict the existence of gapless edge modes in a non-Hermitian model. The chirally-broken, $PT$-symmetric model is studied; we suggest an explanation for why the topological invariant is a global property of the Hamiltonian. A geometrical picture is provided by examining eigenvector evolution on the Bloch sphere. We justify our analysis numerically and discuss relevant applications.
192 - Dizhou Xie , Wei Gou , Teng Xiao 2019
The Su-Schrieffer-Heeger (SSH) model perhaps is the easiest and the most basic model for topological excitations. Many variations and extensions of the SSH model have been proposed and explored to better understand both fundamental and novel aspects of topological physics. The SSH4 model has been proposed theoretically as an extended SSH model with higher dimension (the internal dimension changes from two to four). It has been proposed that the winding number in this system can be determined through a higher-dimensional extension of the mean chiral displacement measurement, however this has not yet been verified in experiment. Here we report the realization of this model with ultracold atoms in a momentum lattice. We verify the winding number through measurement of the mean chiral displacement in a system with higher internal dimension, we map out the topological phase transition in this system, and we confirm the topological edge state by observation of the quench dynamics when atoms are initially prepared at the system boundary.
Charge-density waves are responsible for symmetry-breaking displacements of atoms and concomitant changes in the electronic structure. Linear response theories, in particular density-functional perturbation theory, provide a way to study the effect of displacements on both the total energy and the electronic structure based on a single ab initio calculation. In downfolding approaches, the electronic system is reduced to a smaller number of bands, allowing for the incorporation of additional correlation and environmental effects on these bands. However, the physical contents of this downfolded model and its potential limitations are not always obvious. Here, we study the potential-energy landscape and electronic structure of the Su-Schrieffer-Heeger (SSH) model, where all relevant quantities can be evaluated analytically. We compare the exact results at arbitrary displacement with diagrammatic perturbation theory both in the full model and in a downfolded effective single-band model, which gives an instructive insight into the properties of downfolding. An exact reconstruction of the potential-energy landscape is possible in a downfolded model, which requires a dynamical electron-biphonon interaction. The dispersion of the bands upon atomic displacement is also found correctly, where the downfolded model by construction only captures spectral weight in the target space. In the SSH model, the electron-phonon coupling mechanism involves exclusively hybridization between the low- and high-energy bands and this limits the computational efficiency gain of downfolded models.
We propose an implementation of a generalized Su-Schrieffer-Heeger (SSH) model based on optomechanical arrays. The topological properties of the generalized SSH model depend on the effective optomechanical interactions enhanced by strong driving optical fields. Three phases including one trivial and two distinct topological phases are found in the generalized SSH model. The phase transition can be observed by turning the strengths and phases of the effective optomechanical interactions via adjusting the external driving fields. Moreover, four types of edge states can be created in generalized SSH model of an open chain under single-particle excitation, and the dynamical behaviors of the excitation in the open chain are related to the topological properties under the periodic boundary condition. We show that the edge states can be pumped adiabatically along the optomechanical arrays by periodically modulating the amplitude and frequency of the driving fields. The generalized SSH model based on the optomechanical arrays provides us a tunable platform to engineer topological phases for photons and phonons, which may have potential applications in controlling the transport of photons and phonons.
In this paper we study the formation of topological Tamm states at the interface between a semi-infinite one-dimensional photonic-crystal and a metal. We show that when the system is topologically non-trivial there is a single Tamm state in each of the band-gaps, whereas if it is topologically trivial the band-gaps host no Tamm states. We connect the disappearance of the Tamm states with a topological transition from a topologically non-trivial system to a topologically trivial one. This topological transition is driven by the modification of the dielectric functions in the unit cell. Our interpretation is further supported by an exact mapping between the solutions of Maxwells equations and the existence of a tight-binding representation of those solutions. We show that the tight-binding representation of the 1D photonic crystal, based on Maxwells equations, corresponds to a Su-Schrieffer-Heeger-type model (SSH-model) for each set of pairs of bands. Expanding this representation near the band edge we show that the system can be described by a Dirac-like Hamiltonian. It allows one to characterize the topology associated with the solution of Maxwells equations via the winding number. In addition, for the infinite system, we provide an analytical expression for the photonic bands from which the band-gaps can be computed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا