Do you want to publish a course? Click here

Likelihood for Detection of Sub-parsec Supermassive Black Hole Binaries in Spectroscopic Surveys

233   0   0.0 ( 0 )
 Added by Tamara Bogdanovic
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a modular analytic model to determine the likelihood for detection of SBHBs by ongoing spectroscopic surveys. The model combines the parametrized rate of orbital evolution of SBHBs in circumbinary disks with the selection effects of spectroscopic surveys and returns a multivariate likelihood for SBHB detection. Based on this model we find that in order to evolve into the detection window of the spectroscopic searches from larger separations in less than a Hubble time, $10^8M_odot$ SBHBs must, on average, experience angular momentum transport faster than that provided by a disk with accretion rate $0.06,dot{M}_E$. Spectroscopic searches with yearly cadence of observations are in principle sensitive to binaries with orbital separations $< {rm few}times 10^4, r_g$ ($r_g = GM/c^2$ and $M$ is the binary mass), and for every one SBHB in this range there should be over 200 more gravitationally bound systems with similar properties, at larger separations. Furthermore, if spectra of all SBHBs in this separation range exhibit the AGN-like emission lines utilized by spectroscopic searches, the projection factors imply five undetected binaries for each observed $10^8M_odot$ SBHB with mass ratio $0.3$ and orbital separation $10^4,r_g$ (and more if some fraction of SBHBs is inactive). This model can be used to infer the most likely orbital parameters for observed SBHB candidates and to provide constraints on the rate of orbital evolution of SBHBs, if observed candidates are shown to be genuine binaries.



rate research

Read More

Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
116 - Chang-Shuo Yan 2015
Supermassive binary black holes (BBHs) are unavoidable products of galaxy mergers and are expected to exist in the cores of many quasars. Great effort has been made during the past several decades to search for BBHs among quasars; however, observational evidence for BBHs remains elusive and ambiguous, which is difficult to reconcile with theoretical expectations. In this paper, we show that the distinct optical-to-UV spectrum of Mrk 231 can be well interpreted as emission from accretion flows onto a BBH, with a semimajor axis of ~590AU and an orbital period of ~1.2 year. The flat optical and UV continua are mainly emitted from a circumbinary disk and a mini-disk around the secondary black hole (BH), respectively; and the observed sharp drop off and flux deficit at wavelength lambda ~ 4000-2500 Angstrom is due to a gap (or hole) opened by the secondary BH migrating within the circumbinary disk. If confirmed by future observations, this BBH will provide a unique laboratory to study the interplay between BBHs and accretion flows onto them. Our result also demonstrates a new method to find sub-parsec scale BBHs by searching for deficits in the optical-to-UV continuum among the spectra of quasars.
Elusive supermassive black hole binaries (SMBHBs) are thought to be the penultimate stage of galaxy mergers, preceding a final coalescence phase. SMBHBs are sources of continuous gravitational waves, possibly detectable by pulsar timing arrays; the identification of candidates could help in performing targeted gravitational wave searches. Due to their origin in the innermost parts of active galactic nuclei (AGN), X-rays are a promising tool to unveil the presence of SMBHBs, by means of either double Fe K$alpha$ emission lines or periodicity in their light curve. Here we report on a new method to select SMBHBs by means of the presence of a periodic signal in their Swift-BAT 105-months light curves. Our technique is based on the Fishers exact g-test and takes into account the possible presence of colored noise. Among the 553 AGN selected for our investigation, only the Seyfert 1.5 Mrk 915 emerged as possible candidate for a SMBHB; from the subsequent analysis of its light curve we find a period $P_0=35pm2$ months, and the null hypothesis is rejected at the $3.7sigma$ confidence level. We also present a detailed analysis of the BAT light curve of the only previously X-ray-selected binary candidate source in the literature, the Seyfert 2 galaxy MCG+11-11-032. We find $P_0=26.3pm0.6$ months, consistent with the one inferred from previously reported double Fe K$alpha$ emission lines.
We present a method for comparing the H$beta$ emission-line profiles of observed supermassive black hole (SBHB) candidates and models of sub-parsec SBHBs in circumbinary disks. Using the approach based on principal component analysis we infer the values of the binary parameters for the spectroscopic SBHB candidates and evaluate the parameter degeneracies, representative of the uncertainties intrinsic to such measurements. We find that as a population, the SBHB candidates favor the average value of the semimajor axis corresponding to $log(a/M) approx 4.20pm 0.42$ and comparable mass ratios, $q>0.5$. If the SBHB candidates considered are true binaries, this result would suggest that there is a physical process that allows initially unequal mass systems to evolve toward comparable mass ratios (e.g., accretion that occurs preferentially onto the smaller of the black holes) or point to some, yet unspecified, selection bias. Our method also indicates that the SBHB candidates equally favor configurations in which the mini-disks are coplanar or misaligned with the binary orbital plane. If confirmed for true SBHBs, this finding would indicate the presence of a physical mechanism that maintains misalignment of the mini-disks down to sub-parsec binary separations (e.g., precession driven by gravitational torques). The probability distributions of the SBHB parameters inferred for the observed SBHB candidates and our control group of AGNs are statistically indistinguishable, implying that this method can in principle be used to interpret the observed emission-line profiles once a sample of confirmed SBHBs is available but cannot be used as a conclusive test of binarity.
173 - F. K. Liu 2009
Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $propto t^{-5/3}$, would stop at a time $T_{rm tr} simeq eta T_{rm b}$. Here, $eta sim0.25$ and $T_{rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{rm r} simeq xi T_b$, where $xi sim 1$. Both $eta$ and $xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا