Do you want to publish a course? Click here

Stability of the Broad Line Region Geometry and Dynamics in Arp 151 Over Seven Years

216   0   0.0 ( 0 )
 Added by Anna Pancoast
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning $2008-2015$. We present modeling of these velocity-resolved reverberation mapping datasets using a geometric and dynamical model for the broad line region (BLR). By modeling each of the three datasets independently, we infer the evolution of the BLR structure in Arp 151 over a total of seven years and constrain the systematic uncertainties in non-varying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of $sim 2$. The dynamics of the BLR are dominated by inflow and the inferred black hole mass is consistent for the three datasets, despite the increase in BLR size. Combining the inference for the three datasets yields a black hole mass and statistical uncertainty of $log_{10}($M$_{rm BH}/rm{M}_{odot})=6.82^{+0.09}_{-0.09}$ with a standard deviation in individual measurements of 0.13 dex.



rate research

Read More

90 - S. Valenti , D.J. Sand 2015
We present the first results from the Las Cumbres Observatory Global Telescope (LCOGT) Networks Active Galactic Nuclei Key Project, a large program devoted to using the robotic resources of LCOGT to perform time domain studies of active galaxies. We monitored the Seyfert 1 galaxy Arp~151 (Mrk~40) for $sim$200 days with robotic imagers and with the FLOYDS robotic spectrograph at Faulkes Telescope North. Arp~151 was highly variable during this campaign, with $V$-band light curve variations of $sim$0.3 mag and H$beta$ flux changing by a factor of $sim$3. We measure robust time lags between the $V$-band continuum and the H$alpha$, H$beta$ and H$gamma$ emission lines, with $tau_mathrm{cen} = 13.89^{+1.39}_{-1.41}$, 7.52$^{+1.43}_{-1.06}$ and 7.40$^{+1.50}_{-1.32}$ days, respectively. The lag for the ion{He}{2} $lambda4686$ emission line is unresolved. We measure a velocity-resolved lag for the H$beta$ line, which is clearly asymmetric with higher lags on the blue wing of the line which decline to the red, possibly indicative of radial inflow, and is similar in morphology to past observations of the H$beta$ transfer function shape. Assuming a virialization factor of $f$=5.5, we estimate a black hole mass of $M_mathrm{BH}=6.2^{+1.4}_{-1.2}times$10$^{6}$~$M_{odot}$, also consistent with past measurements for this object. These results represent the first step to demonstrate the powerful robotic capabilities of LCOGT for long-term, AGN time domain campaigns that human intensive programs cannot easily accomplish. Arp 151 is now one of just a few AGN where the virial product is known to remain constant against substantial changes in H$beta$ lag and luminosity.
The Broad Emission Lines (BELs) in spectra of type 1 Active Galactic Nuclei (AGN) can be very complex, indicating a complex Broad Line Region (BLR) geometry. According to the standard unification model one can expect an accretion disk around a supermassive black hole in all AGN. Therefore, a disk geometry is expected in the BLR. However, a small fraction of BELs show double-peaked profiles which indicate the disk geometry. Here, we discuss a two-component model, assuming an emission from the accretion disk and one additional emission from surrounding region. We compared the modeled BELs with observed ones (mostly broad H$alpha$ and H$beta$ profiles) finding that the model can well describe single-peaked and double-peaked observed broad line profiles.
We aim to study the structure and kinematics of the broad line region (BLR) of a sample of 27 gravitationally lensed quasars with up to five different epochs of observation. This sample is composed of ~100 spectra from the literature plus 22 unpublished spectra of 11 systems. We measure the magnitude differences in the broad emission line (BEL) wings and statistically model the distribution of microlensing magnifications to determine a maximum likelihood estimate for the sizes of the C IV, C III], and Mg II emitting regions. The BELs in lensed quasars are expected to be magnified differently owing to the different sizes of the regions from which they originate. Focusing on the most common BELs in our spectra (C IV, C III], and Mg II), we find that the low-ionization line Mg II is only weakly affected by microlensing. In contrast, the high-ionization line C IV shows strong microlensing in some cases, indicating that its emission region is more compact. Thus, the BEL profiles are deformed differently depending on the geometry and kinematics of the corresponding emitting region. We detect microlensing in either the blue or the red wing (or in both wings with different amplitudes) of C IV in more than 50% of the systems and find outstanding asymmetries in the wings of QSO 0957+561, SDSS J1004+4112, SDSS J1206+4332, and SDSS J1339+1310. This observation indicates that the BLR is, in general, not spherically symmetric and supports the existence of two regions in the BLR, one insensitive to microlensing and another that only shows up when it is magnified by microlensing.
We use high spectral resolution (R > 8000) data covering 3800-13000r{A} to study the physical conditions of the broad line region (BLR) of nine nearby Seyfert 1 galaxies. Up to six broad HI lines are present in each spectrum. A comparison - for the first time using simultaneous optical to near-infrared observations - to photoionisation calculations with our devised simple scheme yields the extinction to the BLR at the same time as determining the density and photon flux, and hence distance from the nucleus, of the emitting gas. This points to a typical density for the HI emitting gas of 10$^{11}$cm$^{-3}$ and shows that a significant amount of this gas lies at regions near the dust sublimation radius, consistent with theoretical predictions. We also confirm that in many objects the line ratios are far from case B, the best-fit intrinsic broad-line H$alpha$/H$beta$ ratios being in the range 2.5-6.6 as derived with our photoionization modeling scheme. The extinction to the BLR, based on independent estimates from HI and HeII lines, is A$_V$ $le$ 3 for Seyfert 1-1.5s, while Seyfert 1.8-1.9s have A$_V$ in the range 4-8. A comparison of the extinction towards the BLR and narrow line region (NLR) indicates that the structure obscuring the BLR exists on scales smaller than the NLR. This could be the dusty torus, but dusty nuclear spirals or filaments could also be responsible. The ratios between the X-ray absorbing column N$_H$ and the extinction to the BLR are consistent with the Galactic gas-to-dust ratio if N$_H$ variations are considered.
We investigate a long-term (26 years, from 1987 to 2013) variability in the broad spectral line properties of the radio galaxy Arp 102B, an active galaxy with broad double-peaked emission lines. We use observations presented in Paper I (Shapovalova et al. 2013) in the period from 1987 to 2011, and a new set of observations performed in 2012--2013. To explore the BLR geometry, and clarify some contradictions about the nature of the BLR in Arp 102B we explore variations in the H$alpha$ and H$beta$ line parameters during the monitored period. We fit the broad lines with three broad Gaussian functions finding the positions and intensities of the blue and red peaks in H$alpha$ and H$beta$. Additionally we fit averaged line profiles with the disc model. We find that the broad line profiles are double-peaked and have not been changed significantly in shapes, beside an additional small peak that, from time to time can be seen in the blue part of the H$alpha$ line. The positions of the blue and red peaks { have not changed significantly during the monitored period. The H$beta$ line is broader than H$alpha$ line in the monitored period. The disc model is able to reproduce the H$beta$ and H$alpha$ broad line profiles, however, observed variability in the line parameters are not in a good agreement with the emission disc hypothesis. It seems that the BLR of Arp 102B has a disc-like geometry, but the role of an outflow can also play an important role in observed variation of the broad line properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا