Do you want to publish a course? Click here

Complex Broad Emission Line Profiles of AGN - Geometry of the Broad Line Region

222   0   0.0 ( 0 )
 Added by Edi Bon
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Broad Emission Lines (BELs) in spectra of type 1 Active Galactic Nuclei (AGN) can be very complex, indicating a complex Broad Line Region (BLR) geometry. According to the standard unification model one can expect an accretion disk around a supermassive black hole in all AGN. Therefore, a disk geometry is expected in the BLR. However, a small fraction of BELs show double-peaked profiles which indicate the disk geometry. Here, we discuss a two-component model, assuming an emission from the accretion disk and one additional emission from surrounding region. We compared the modeled BELs with observed ones (mostly broad H$alpha$ and H$beta$ profiles) finding that the model can well describe single-peaked and double-peaked observed broad line profiles.



rate research

Read More

Results of a long-term monitoring ($gtrsim 10$ years) of the broad line and continuum fluxes of three Active Galactic Nuclei (AGN), 3C 390.3, NGC 4151, and NGC 5548, are presented. We analyze the H$alpha$ and H$beta$ profile variations during the monitoring period and study different details (as bumps, absorption bands) which can indicate structural changes in the Broad Line Region (BLR). The BLR dimensions are estimated using the time lags between the continuum and the broad lines flux variations. We find that in the case of 3C 390.3 and NGC 5548 a disk geometry can explain both the broad line profiles and their flux variations, while the BLR of NGC 4151 seems more complex and is probably composed of two or three kinematically different regions.
We demonstrate a new technique for determining the physical conditions of the broad line emitting gas in quasars, using near-infrared hydrogen emission lines. Unlike higher ionisation species, hydrogen is an efficient line emitter for a very wide range of photoionisation conditions, and the observed line ratios depend strongly on the density and photoionisation state of the gas present. A locally optimally emitting cloud model of the broad emission line region was compared to measured emission lines of four nearby ($zapprox0.2$) quasars that have optical and NIR spectra of sufficient signal-to-noise to measure their Paschen lines. The model provides a good fit to three of the objects, and a fair fit to the fourth object, a ULIRG. We find that low incident ionising fluxes ($phih<10^{18}$cmsqs), and high gas densities ($ h>10^{12}$cmcu) are required to reproduce the observed hydrogen emission line ratios. This analysis demonstrates that the use of composite spectra in photoionisation modelling is inappropriate; models must be fitted to the individual spectra of quasars.
We analyze the properties of the broad line region (BLR) in low luminosity AGN by using HST/STIS spectra. We consider a sample of 24 nearby galaxies in which the presence of a BLR has been reported from their Palomar ground-based spectra. Following a widely used strategy, we used the [SII] doublet to subtract the contribution of the narrow emission lines to the H-alpha+[NII] complex and to isolate the BLR emission. Significant residuals that suggest a BLR, are present. However, the results change substantially when the [OI] doublet is used. Furthermore, the spectra are also reproduced well by just including a wing in the narrow H-alpha and [NII] lines, thus not requiring the presence of a BLR. We conclude that complex structure of the narrow line region (NLR) is not captured with this approach and that it does not lead to general robust constraints on the properties of the BLR in these low luminosity AGN. Nonetheless, the existence of a BLR is firmly established in 5 Seyferts, and 5 LINERs. However, the measured BLR fluxes and widths in the 5 LINERs differ substantially with respect to the ground-based data. The BLR sizes in LINERs, which are estimated by using the virial formula from the line widths and the black hole mass, are about 1 order of magnitude greater than the extrapolation to low luminosities of the relation between the BLR radius and AGN luminosity observed in more powerful active nuclei. We ascribe the larger BLR radius to the lower accretion rate in LINERs when compared to the Seyfert, which causes the formation of an inner region dominated by an advection-dominated accretion flow (ADAF). The estimated BLR sizes in LINERs are comparable to the radius where the transition between the ADAF and the standard thin disk occurs due to disk evaporation.
114 - J. Esser , J.-U. Pott , H. Landt 2018
The formation processes and the exact appearance of the dust torus and broad line region (BLR) of active galactic nuclei (AGN) are under debate. Theoretical studies show a possible connection between the dust torus and BLR through a common origin in the accretion disk. However observationally the dust torus and BLR are typically studied separately. NGC~4151 is possibly one of the best suited Seyfert~1 galaxies for simultaneous examinations because of its high number of both photometric and spectroscopic observations in the past. Here we compare changes of the dust radius to shape variations of broad emission lines (BEL). While the radius of the dust torus decreased by almost a factor of two from 2004 to 2006 shape variations can be seen in the red wing of BELs of NGC~4151. These simultaneous changes are discussed in a dust and BEL formation scheme. We also use the BEL shape variations to assess possible cloud distributions, especially in azimuthal direction, which could be responsible for the observed variations. Our findings can best be explained in the framework of a dust inflated accretion disk. The changes in the BELs suggest that this dusty cloud formation does not happen continuously, and over the whole accretion disk, but on the contrary in spatially confined areas over rather short amount of times. We derive limits to the azimuthal extension of the observed localized BEL flux enhancement event.
In this work we analyze a sample of AGN spectra, selected from the 6th Data Release of the Sloan Digital Sky Survey, exploiting a generalized technique of line profile analysis, designed to take into account the whole profiles of their broad emission lines. We find that the line profile broadening functions result from a complex structure, but we may be able to infer some constraints about the role of the geometrical factor, thus improving our ability to estimate AGN properties and their relation with the host galaxy. Our results suggest that flattening and inclination within the structure of the Broad Line Region (BLR) must be taken into account. We detect low inclinations of the BLR motion plane with respect to our line of sight, typically i < 20 degrees, with a geometrical effect which generally decreases as the line profile becomes broader.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا