Do you want to publish a course? Click here

A Microscopic Model of the Stokes-Einstein Relation in Arbitrary Dimension

150   0   0.0 ( 0 )
 Added by Patrick Charbonneau
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Stokes-Einstein relation (SER) is one of the most robust and widely employed results from the theory of liquids. Yet sizable deviations can be observed for self-solvation, which cannot be explained by the standard hydrodynamic derivation. Here, we revisit the work of Masters and Madden [J. Chem. Phys. 74, 2450-2459 (1981)], who first solved a statistical mechanics model of the SER using the projection operator formalism. By generalizing their analysis to all spatial dimensions and to partially structured solvents, we identify a potential microscopic origin of some of these deviations. We also reproduce the SER-like result from the exact dynamics of infinite-dimensional fluids.



rate research

Read More

We generalize to higher spatial dimensions the Stokes--Einstein relation (SER) and the leading correction to diffusivity in periodic systems, and validate them using numerical simulations. Using these results, we investigate the evolution of the SER violation with dimension in simple hard sphere glass formers. The analysis suggests that the SER violation disappears around dimension d=8, above which SER is not violated. The critical exponent associated to the violation appears to evolve linearly in 8-d below d=8, as predicted by Biroli and Bouchaud [J. Phys.: Cond. Mat. 19, 205101 (2007)], but the linear coefficient is not consistent with their prediction. The SER violation evolution with d establishes a new benchmark for theory, and a complete description remains an open problem.
72 - S. J. Lee 1998
We present Monte Carlo simulation results on the equilibrium relaxation of the two dimensional lattice Coulomb gas with fractional charges, which exhibits a close analogy to the primary relaxation of fragile supercooled liquids. Single particle and collective relaxation dynamics show that the Stokes-Einstein relation is violated at low temperatures, which can be characterized by a fractional power law relation between the self-diffusion coefficient and the characteristic relaxation time. The microscopic spatially heterogeneous structure responsible for the violation is identified.
81 - A. Bhattacharyay 2019
Brownian motion with coordinate dependent damping and diffusivity is ubiquitous. Understanding equilibrium of a Brownian particle with coordinate dependent diffusion and damping is a contentious area. In this paper, we present an alternative approach based on already established methods to this problem. We solve for the equilibrium distribution of the over-damped dynamics using Kramers-Moyal expansion. We compare this with the over-damped limit of the generalized Maxwell-Boltzmann distribution. We show that the equipartition of energy helps recover the Stokes-Einstein relation at constant diffusivity and damping of the homogeneous space. However, we also show that, there exists no homogeneous limit of coordinate dependent diffusivity and damping with respect to the applicability of Stokes-Einstein relation when it does not hold locally. In the other scenario where the Stokes-Einstein relation holds locally, one needs to impose a restriction on the local maximum velocity of the Brownian particle to make the modified Maxwell-Boltzmann distribution coincide with the modified Boltzmann distribution in the over-damped limit.
We consider diffusion in arbitrary spatial dimension d with the addition of a resetting process wherein the diffusive particle stochastically resets to a fixed position at a constant rate $r$. We compute the non-equilibrium stationary state which exhibits non-Gaussian behaviour. We then consider the presence of an absorbing target centred at the origin and compute the survival probability and mean time to absorption of the diffusive particle by the target. The mean absorption time is finite and has a minimum value at an optimal resetting rate $r^*$ which depends on dimension. Finally we consider the problem of a finite density of diffusive particles, each resetting to its own initial position. While the typical survival probability of the target at the origin decays exponentially with time regardless of spatial dimension, the average survival probability decays asymptotically as $exp -A (log t)^d$ where $A$ is a constant. We explain these findings using an interpretation as a renewal process and arguments invoking extreme value statistics.
Several low-dimensional systems show a crossover from diffusive to ballistic heat transport when system size is decreased. Although there is some phenomenological understanding of this crossover phenomena in the coarse grained level, a microscopic picture that consistently describes both the ballistic and the diffusive transport regimes has been lacking. In this work we derive a scaling from for the thermal current in a class of one dimensional systems attached to heat baths at boundaries, and show rigorously that the crossover occurs when the characteristic length scale of the system competes with the system size.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا