Do you want to publish a course? Click here

Experimental demonstration of Pauli-frame randomization on a superconducting qubit

80   0   0.0 ( 0 )
 Added by Matthew Ware
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The promise of quantum computing with imperfect qubits relies on the ability of a quantum computing system to scale cheaply through error correction and fault-tolerance. While fault-tolerance requires relatively mild assumptions about the nature of qubit errors, the overhead associated with coherent and non-Markovian errors can be orders of magnitude larger than the overhead associated with purely stochastic Markovian errors. One proposal to address this challenge is to randomize the circuits of interest, shaping the errors to be stochastic Pauli errors but leaving the aggregate computation unaffected. The randomization technique can also suppress couplings to slow degrees of freedom associated with non-Markovian evolution. Here we demonstrate the implementation of Pauli-frame randomization in a superconducting circuit system, exploiting a flexible programming and control infrastructure to achieve this with low effort. We use high-accuracy gate-set tomography to characterize in detail the properties of the circuit error, with and without the randomization procedure, which allows us to make rigorous statements about Markovianity as well as the nature of the observed errors. We demonstrate that randomization suppresses signatures of non-Markovian evolution to statistically insignificant levels, from a Markovian model violation ranging from $43sigma$ to $1987sigma$, down to violations between $0.3sigma$ and $2.7sigma$ under randomization. Moreover, we demonstrate that, under randomization, the experimental errors are well described by a Pauli error model, with model violations that are similarly insignificant (between $0.8sigma$ and $2.7sigma$). Importantly, all these improvements in the model accuracy were obtained without degradation to fidelity, and with some improvements to error rates as quantified by the diamond norm.



rate research

Read More

In a `shortcut-to-adiabaticity (STA) protocol, the counter-diabatic Hamiltonian, which suppresses the non-adiabatic transition of a reference `adiabatic trajectory, induces a quantum uncertainty of the work cost in the framework of quantum thermodynamics. Following a theory derived recently [Funo et al 2017 Phys. Rev. Lett. 118 100602], we perform an experimental measurement of the STA work statistics in a high-quality superconducting Xmon qubit. Through the frozen-Hamiltonian and frozen-population techniques, we experimentally realize the two-point measurement of the work distribution for given initial eigenstates. Our experimental statistics verify (i) the conservation of the average STA work and (ii) the equality between the STA excess of work fluctuations and the quantum geometric tensor.
Geometric quantum manipulation and Landau-Zener interferometry have been separately explored in many quantum systems. In this Letter, we combine these two approaches to study the dynamics of a superconducting phase qubit. We experimentally demonstrate Landau-Zener interferometry based on the pure geometric phases in this solid-state qubit. We observe the interference caused by a pure geometric phase accumulated in the evolution between two consecutive Landau-Zener transitions, while the dynamical phase is canceled out by a spin-echo pulse. The full controllability of the qubit state as a function of the intrinsically robust geometric phase provides a promising approach for quantum state manipulation.
Coherent manipulation of an increasing number of qubits for the generation of entangled states has been an important goal and benchmark in the emerging field of quantum information science. The multiparticle entangled states serve as physical resources for measurement-based quantum computing and high-precision quantum metrology. However, their experimental preparation has proved extremely challenging. To date, entangled states up to six, eight atoms, or six photonic qubits have been demonstrated. Here, by exploiting both the photons polarization and momentum degrees of freedom, we report the creation of hyper-entangled six-, eight-, and ten-qubit Schrodinger cat states. We characterize the cat states by evaluating their fidelities and detecting the presence of genuine multi-partite entanglement. Small modifications of the experimental setup will allow the generation of various graph states up to ten qubits. Our method provides a shortcut to expand the effective Hilbert space, opening up interesting applications such as quantum-enhanced super-resolving phase measurement, graph-state generation for anyonic simulation and topological error correction, and novel tests of nonlocality with hyper-entanglement.
The resonator-induced phase (RIP) gate is a multi-qubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional (3D) circuit-quantum electrodynamics architecture, demonstrating high-fidelity controlled-Z (CZ) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multi-qubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a four-qubit Greenberger-Horne-Zeilinger state.
Gate operations in a quantum information processor are generally realized by tailoring specific periods of free and driven evolution of a quantum system. Unwanted environmental noise, which may in principle be distinct during these two periods, acts to decohere the system and increase the gate error rate. While there has been significant progress characterizing noise processes during free evolution, the corresponding driven-evolution case is more challenging as the noise being probed is also extant during the characterization protocol. Here we demonstrate the noise spectroscopy (0.1 - 200 MHz) of a superconducting flux qubit during driven evolution by using a robust spin-locking pulse sequence to measure relaxation (T1rho) in the rotating frame. In the case of flux noise, we resolve spectral features due to coherent fluctuators, and further identify a signature of the 1MHz defect in a time-domain spin-echo experiment. The driven-evolution noise spectroscopy complements free-evolution methods, enabling the means to characterize and distinguish various noise processes relevant for universal quantum control.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا