Do you want to publish a course? Click here

WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling

64   0   0.0 ( 0 )
 Added by Mingyuan Zhou
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

To train an inference network jointly with a deep generative topic model, making it both scalable to big corpora and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation, which infers posterior samples via a hybrid of stochastic-gradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarchy of gamma distributions, while the inference network of WHAI is a Weibull upward-downward variational autoencoder, which integrates a deterministic-upward deep neural network, and a stochastic-downward deep generative model based on a hierarchy of Weibull distributions. The Weibull distribution can be used to well approximate a gamma distribution with an analytic Kullback-Leibler divergence, and has a simple reparameterization via the uniform noise, which help efficiently compute the gradients of the evidence lower bound with respect to the parameters of the inference network. The effectiveness and efficiency of WHAI are illustrated with experiments on big corpora.

rate research

Read More

70 - Hao Zhang , Bo Chen , Yulai Cong 2020
To build a flexible and interpretable model for document analysis, we develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network. In order to provide scalable posterior inference for the parameters of the generative network, we develop topic-layer-adaptive stochastic gradient Riemannian MCMC that jointly learns simplex-constrained global parameters across all layers and topics, with topic and layer specific learning rates. Given a posterior sample of the global parameters, in order to efficiently infer the local latent representations of a document under DATM across all stochastic layers, we propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a Weibull distribution based stochastic downward generative model. To jointly model documents and their associated labels, we further propose supervised DATM that enhances the discriminative power of its latent representations. The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora.
Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven diffi- cult to apply to topic models in practice. We present what is to our knowledge the first effective AEVB based inference method for latent Dirichlet allocation (LDA), which we call Autoencoded Variational Inference For Topic Model (AVITM). This model tackles the problems caused for AEVB by the Dirichlet prior and by component collapsing. We find that AVITM matches traditional methods in accuracy with much better inference time. Indeed, because of the inference network, we find that it is unnecessary to pay the computational cost of running variational optimization on test data. Because AVITM is black box, it is readily applied to new topic models. As a dramatic illustration of this, we present a new topic model called ProdLDA, that replaces the mixture model in LDA with a product of experts. By changing only one line of code from LDA, we find that ProdLDA yields much more interpretable topics, even if LDA is trained via collapsed Gibbs sampling.
We introduce a dynamic generative model, Bayesian allocation model (BAM), which establishes explicit connections between nonnegative tensor factorization (NTF), graphical models of discrete probability distributions and their Bayesian extensions, and the topic models such as the latent Dirichlet allocation. BAM is based on a Poisson process, whose events are marked by using a Bayesian network, where the conditional probability tables of this network are then integrated out analytically. We show that the resulting marginal process turns out to be a Polya urn, an integer valued self-reinforcing process. This urn processes, which we name a Polya-Bayes process, obey certain conditional independence properties that provide further insight about the nature of NTF. These insights also let us develop space efficient simulation algorithms that respect the potential sparsity of data: we propose a class of sequential importance sampling algorithms for computing NTF and approximating their marginal likelihood, which would be useful for model selection. The resulting methods can also be viewed as a model scoring method for topic models and discrete Bayesian networks with hidden variables. The new algorithms have favourable properties in the sparse data regime when contrasted with variational algorithms that become more accurate when the total sum of the elements of the observed tensor goes to infinity. We illustrate the performance on several examples and numerically study the behaviour of the algorithms for various data regimes.
Variational Inference (VI) combined with Bayesian nonlinear filtering produces the state-of-the-art results for latent trajectory inference. A body of recent works focused on Sequential Monte Carlo (SMC) and its expansion, e.g., Forward Filtering Backward Simulation (FFBSi). These studies achieved a great success, however, remain a serious problem for particle degeneracy. In this paper, we propose Ensemble Kalman Objectives (EnKOs), the hybrid method of VI and Ensemble Kalman Filter (EnKF), to infer the State Space Models (SSMs). Unlike the SMC based methods, the our proposed method can identify the latent dynamics given fewer particles because of its rich particle diversity. We demonstrate that EnKOs outperform the SMC based methods in terms of predictive ability for three benchmark nonlinear dynamics systems tasks.
Topic models are Bayesian models that are frequently used to capture the latent structure of certain corpora of documents or images. Each data element in such a corpus (for instance each item in a collection of scientific articles) is regarded as a convex combination of a small number of vectors corresponding to `topics or `components. The weights are assumed to have a Dirichlet prior distribution. The standard approach towards approximating the posterior is to use variational inference algorithms, and in particular a mean field approximation. We show that this approach suffers from an instability that can produce misleading conclusions. Namely, for certain regimes of the model parameters, variational inference outputs a non-trivial decomposition into topics. However --for the same parameter values-- the data contain no actual information about the true decomposition, and hence the output of the algorithm is uncorrelated with the true topic decomposition. Among other consequences, the estimated posterior mean is significantly wrong, and estimated Bayesian credible regions do not achieve the nominal coverage. We discuss how this instability is remedied by more accurate mean field approximations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا