No Arabic abstract
In this paper, we study a sextic del Pezzo fibration over a curve comprehensively. We obtain certain formulae of several basic invariants of such a fibration. We also establish the embedding theorem of such a fibration which asserts that every such a fibration is a relative linear section of a Mori fiber space with the general fiber $(mathbb{P}^{1})^{3}$ and that with the general fiber $(mathbb{P}^{2})^{2}$. As an application of this embedding theorem, we classify singular fibers of such a fibrations and answer a question of T. Fujita about existence of non-normal fibers.
We provide a semiorthogonal decomposition for the derived category of fibrations of quintic del Pezzo surfaces with rational Gorenstein singularities. There are three components, two of which are equivalent to the derived categories of the base and the remaining non-trivial component is equivalent to the derived category of a flat and finite of degree 5 scheme over the base. We introduce two methods for the construction of the decomposition. One is the moduli space approach following the work of Kuznetsov on the sextic del Pezzo fibrations and the components are given by the derived categories of fine relative moduli spaces. The other approach is that one can realize the fibration as a linear section of a Grassmannian bundle and apply Homological Projective Duality.
By Jahnke-Peternell-Radloff and Takeuchi, almost Fano threefolds with del Pezzo fibrations were classified. Among them, there exists 10 classes such that the existence of members of these was not proved. In this paper, we construct such examples belonging to each of 10 classes.
The surfaces considered are real, rational and have a unique smooth real $(-2)$-curve. Their canonical class $K$ is strictly negative on any other irreducible curve in the surface and $K^2>0$. For surfaces satisfying these assumptions, we suggest a certain signed count of real rational curves that belong to a given divisor class and are simply tangent to the $(-2)$-curve at each intersection point. We prove that this count provides a number which depends neither on the point constraints nor on deformation of the surface preserving the real structure and the $(-2)$-curve.
Let S be a split family of del Pezzo surfaces over a discrete valuation ring such that the general fiber is smooth and the special fiber has ADE-singularities. Let G be the reductive group given by the root system of these singularities. We construct a G-torsor over S whose restriction to the generic fiber is the extension of structure group of the universal torsor. This extends a construction of Friedman and Morgan for individual singular del Pezzo surfaces. In case of very good residue characteristic, this torsor is unique and infinitesimally rigid.
We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation families grouped into six unprojection cascades (this overlaps with work of Fujita and Yasutake), we tabulate their biregular invariants, we give good model constructions for surfaces in all families as degeneracy loci in rep quotient varieties and we prove that precisely 26 families admit qG-degenerations to toric surfaces. This work is part of a program to study mirror symmetry for orbifold del Pezzo surfaces.