Do you want to publish a course? Click here

Del Pezzo surfaces with 1/3(1,1) points

232   0   0.0 ( 0 )
 Added by Alessio Corti
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation families grouped into six unprojection cascades (this overlaps with work of Fujita and Yasutake), we tabulate their biregular invariants, we give good model constructions for surfaces in all families as degeneracy loci in rep quotient varieties and we prove that precisely 26 families admit qG-degenerations to toric surfaces. This work is part of a program to study mirror symmetry for orbifold del Pezzo surfaces.



rate research

Read More

In order to study integral points of bounded log-anticanonical height on weak del Pezzo surfaces, we classify weak del Pezzo pairs. As a representative example, we consider a quartic del Pezzo surface of singularity type $mathbf{A}_1+mathbf{A}_3$ and prove an analogue of Manins conjecture for integral points with respect to its singularities and its lines.
Let S be a split family of del Pezzo surfaces over a discrete valuation ring such that the general fiber is smooth and the special fiber has ADE-singularities. Let G be the reductive group given by the root system of these singularities. We construct a G-torsor over S whose restriction to the generic fiber is the extension of structure group of the universal torsor. This extends a construction of Friedman and Morgan for individual singular del Pezzo surfaces. In case of very good residue characteristic, this torsor is unique and infinitesimally rigid.
The surfaces considered are real, rational and have a unique smooth real $(-2)$-curve. Their canonical class $K$ is strictly negative on any other irreducible curve in the surface and $K^2>0$. For surfaces satisfying these assumptions, we suggest a certain signed count of real rational curves that belong to a given divisor class and are simply tangent to the $(-2)$-curve at each intersection point. We prove that this count provides a number which depends neither on the point constraints nor on deformation of the surface preserving the real structure and the $(-2)$-curve.
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces.
It goes back to Ahlfors that a real algebraic curve admits a real-fibered morphism to the projective line if and only if the real part of the curve disconnects its complex part. Inspired by this result, we are interested in characterising real algebraic varieties of dimension $n$ admitting real-fibered morphisms to the $n$-dimensional projective space. We present a criterion to classify real-fibered morphisms that arise as finite surjective linear projections from an embedded variety which relies on topological linking numbers. We address special attention to real algebraic surfaces. We classify all real-fibered morphisms from real del Pezzo surfaces to the projective plane and determine which such morphisms arise as the composition of a projective embedding with a linear projection. Furthermore, we give some insights in the case of real conic bundles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا