No Arabic abstract
Heterostructures formed by stacking layered materials require atomically clean interfaces. However, contaminants are usually trapped between the layers, aggregating into blisters. We report a process to remove such blisters, resulting in clean interfaces. We fabricate blister-free regions of graphene encapsulated in hexagonal boron nitride of$sim$5000$mu $m$^{2}$, limited only by the size of the exfoliated flakes. These have mobilities up to$sim$180000cm$^2$V$^{-1}$s$^{-1}$ at room temperature, and$sim$1.8$times$10$^6$cm$^2$V$^{-1}$s$^{-1}$ at 9K. We further demonstrate the effectiveness of our approach by cleaning heterostructures assembled using graphene intentionally exposed to polymers and solvents. After cleaning, these samples reach similar high mobilities. We also showcase the general applicability of our approach to layered materials by cleaning blisters in other heterostructures based on MoS$_{2}$. This demonstrates that exposure of graphene to processing-related contaminants is compatible with the realization of high mobility samples, paving the way to the development of fab-based processes for the integration of layered materials in (opto)-electronic devices.
In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride (hBN), low-loss infrared-active phonon-polaritons exhibit hyperbolic behavior for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides (TMDs), reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near field optical microscopy (SNOM). Here, we review recent progress in state-of-the-art experiments, survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures-of-merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.
Symmetry breaking in two-dimensional layered materials plays a significant role in their macroscopic electrical, optical, magnetic and topological properties, including but not limited to spin-polarization effects, valley-contrasting physics, nonlinear Hall effects, nematic order, ferroelectricity, Bose-Einstein condensation and unconventional superconductivity. Engineering symmetry breaking of two-dimensional layered materials not only offers extraordinary opportunities to tune their physical properties, but also provides unprecedented possibilities to introduce completely new physics and technological innovations in electronics, photonics and optoelectronics. Indeed, over the past 15 years, a wide variety of physical, structural and chemical approaches have been developed to engineer symmetry breaking of two-dimensional layered materials. In this Review, we focus on the recent progresses on engineering the breaking of inversion, rotational, time reversal and spontaneous gauge symmetries in two-dimensional layered materials, and illustrate our perspectives on how these may lead to potential new physics and applications.
Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS2 or WS2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe2 and WSe2, our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN: interfaces which are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two dimensional (2D) crystal NbSe2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glove-box transfer significantly improves the quality of interfaces for WSe2 compared to processing in air.
We study layered systems and heterostructures of s-wave superconductors by means of a suitable generalization of Dynamical Mean-Field Theory. In order to reduce the computational effort, we consider an embedding scheme in which a relatively small number of active layers is embedded in an effective potential accounting for the effect of the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap computation of very large systems. We extend the method to the superconducting state, and we benchmark the approach by means of simple paradigmatic examples showing some examples on how an interface affects the superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution is inhibited.
Carrier multiplication (CM), a photo-physical process to generate multiple electron-hole pairs by exploiting excess energy of free carriers, is explored for efficient photovoltaic conversion of photons from the blue solar band, predominantly wasted as heat in standard solar cells. Current state-of-the-art approaches with nanomaterials have demonstrated improved CM but are not satisfactory due to high energy loss and inherent difficulties with carrier extraction. Here, we report ultra-efficient CM in van der Waals (vdW) layered materials that commences at the energy conservation limit and proceeds with nearly 100% conversion efficiency. A small threshold energy, as low as twice the bandgap, was achieved, marking an onset of quantum yield with enhanced carrier generation. Strong Coulomb interactions between electrons confined within vdW layers allow rapid electron-electron scattering to prevail over electron-phonon scattering. Additionally, the presence of electron pockets spread over momentum space could also contribute to the high CM efficiency. Combining with high conductivity and optimal bandgap, these superior CM characteristics identify vdW materials for third-generation solar cell.