Do you want to publish a course? Click here

Electron beam transfer line design for plasma driven Free Electron Lasers

109   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plasma driven particle accelerators represent the future of compact accelerating machines and Free Electron Lasers are going to benefit from these new technologies. One of the main issue of this new approach to FEL machines is the design of the transfer line needed to match of the electron-beam with the magnetic undulators. Despite the reduction of the chromaticity of plasma beams is one of the main goals, the target of this line is to be effective even in cases of beams with a considerable value of chromaticity. The method here explained is based on the code GIOTTO [1] that works using a homemade genetic algorithm and that is capable of finding optimal matching line layouts directly using a full 3D tracking code.



rate research

Read More

Several methods have been proposed in the literature to improve Free Electron Laser output by transforming the electron phase-space before entering the FEL interaction region. By utilising `beam by design with novel undulators and other beam changing elements, the operating capability of FELs may be further usefully extended. This paper introduces two new such methods to improve output from electron pulses with large energy spreads and the results of simulations of these methods in the 1D limit are presented. Both methods predict orders of magnitude improvements to output radiation powers.
In this paper, we report results of simulations, in the framework of both EuPRAXIA cite{Walk2017} and EuPRAXIA@SPARC_LAB cite{Ferr2017} projects, aimed at delivering a high brightness electron bunch for driving a Free Electron Laser (FEL) by employing a plasma post acceleration scheme. The boosting plasma wave is driven by a tens of SI{}{terawatt} class laser and doubles the energy of an externally injected beam up to GeV{1}. The injected bunch is simulated starting from a photoinjector, matched to plasma, boosted and finally matched to an undulator, where its ability to produce FEL radiation is verified to yield $O( um{e11})$ photons per shot at m{2.7}.
140 - S.-Y. Kim , K. Moon , M. Chung 2021
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the order of 100 T/m. The active plasma lens is therefore an attractive element for plasma wakefield acceleration, because an ultra-small size of the witness electron beam is required for injection into the plasma wakefield to minimize emittance growth and to enhance the capturing efficiency. When the driving beam and witness electron beam co-propagate through the active plasma lens, interactions between the driving and witness beams and the plasma must be considered. In this paper, through particle-in-cell simulations, we discuss the possibility of using an active plasma lens for the final focusing of the electron beam in the presence of driving proton bunches. The beam parameters for AWAKE Run 2 are taken as an example for this type of application. It is confirmed that the amplitude of the plasma wakefield excited by proton bunches remains the same even after propagation through the active plasma lens. The emittance of the witness electron beam increases rapidly in the plasma density ramp regions of the lens. Nevertheless, when the witness electron beam has a charge of 100 pC, emittance of 10 mm mrad, and bunch length of 60 $mu$m, its emittance growth is not significant along the active plasma lens. For small emittance, such as 2 mm mrad, the emittance growth is found to be strongly dependent on the plasma density.
A design study of the diagnostics of a high brightness linac, based on X-band structures, and a plasma accelerator stage, has been delivered in the framework of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual design of the proposed diagnostics, using state of the art systems and new and under development devices. Single shot measurements are preferable for plasma accelerated beams, including emittance, while $mu$m level and fs scale beam size and bunch length respectively are requested. The needed to separate the driver pulse (both laser or beam) from the witness accelerated bunch imposes additional constrains for the diagnostics. We plan to use betatron radiation for the emittance measurement just at the end of the plasma booster, while other single-shot methods must be proven before to be implemented. Longitudinal measurements, being in any case not trivial for the fs level bunch length, seem to have already a wider range of possibilities.
Next-generation plasma-based accelerators can push electron beams to GeV energies within centimetre distances. The plasma, excited by a driver pulse, is indeed able to sustain huge electric fields that can efficiently accelerate a trailing witness bunch, which was experimentally demonstrated on multiple occasions. Thus, the main focus of the current research is being shifted towards achieving a high quality of the beam after the plasma acceleration. In this letter we present beam-driven plasma wakefield acceleration experiment, where initially preformed high-quality witness beam was accelerated inside the plasma and characterized. In this experiment the witness beam quality after the acceleration was maintained on high level, with $0.2%$ final energy spread and $3.8~mu m$ resulting normalized transverse emittance after the acceleration. In this article, for the first time to our knowledge, the emittance of the PWFA beam was directly measured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا