No Arabic abstract
We have fabricated planar amorphous Indium Oxide superconducting resonators ($T_csim2.8$ K) that are sensitive to frequency-selective radiation in the range of 7 to 10 GHz. Those values lay far below twice the superconducting gap that worths about 200 GHz. The photons detection consists in a shift of the fundamental resonance frequency. We show that the detected frequency can be adjusted by modulating the total length of the superconducting resonator. We attribute those observations to the excitation of higher-order resonance modes. The coupling between the fundamental lumped and the higher order distributed resonance is due to the kinetic inductance non-linearity with current. These devices, that we have called Sub-gap Kinetic Inductance Detectors (SKIDs), are to be distinguished from the standard Kinetic Inductance Detectors (KIDs) in which quasi-particles are generated when incident light breaks down Cooper pairs.
We present an experimental study of KIDs fabricated of atomic layer deposited TiN films, and characterized at radiation frequencies of $350$~GHz. The responsivity to radiation is measured and found to increase with increasing radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride / aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power (NEP) improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.
We calculate nonequilibrium quasiparticle and phonon distributions for a number of widely-used low transition temperature thin-film superconductors under constant, uniform illumination by sub-gap probe and pair-breaking signal photons simultaneously. From these distributions we calculate material-characteristic parameters that allow rapid evaluation of an effective quasiparticle temperature using a simple analytical expression, for all materials studied (Mo, Al, Ta, Nb, and NbN) for all photon energies. We also explore the temperature and energy-dependence of the low-energy quasiparticle generation efficiency $eta$ by pair-breaking signal photons finding $eta approx 0.6$ in the limit of thick films at low bath temperatures that is material-independent. Taking the energy distribution of excess quasiparticles into account, we find $eta to 1$ as the bath temperature approaches the transition temperature in agreement with the assumption of the two-temperature model of the nonequilibrium response that is appropriate in that regime. The behaviour of $eta$ with signal frequency scaled by the superconducting energy gap is also shown to be material-independent, and is in qualitative agreement with recent experimental results. An enhancement of $eta$ in the presence of sub-gap (probe) photons is shown to be most significant at signal frequencies near the superconducting gap frequency and arises due to multiple photon absorption events that increase the average energy of excess quasiparticles above that in the absence of the probe.
Hybrid superconducting--spin systems offer the potential to combine highly coherent atomic quantum systems with the scalability of superconducting circuits. To fully exploit this potential requires a high quality-factor microwave resonator, tunable in frequency and able to operate at magnetic fields optimal for the spin system. Such magnetic fields typically rule out conventional Al-based Josephson junction devices that have previously been used for tunable high-$Q$ microwave resonators. The larger critical field of niobium (Nb) allows microwave resonators with large field resilience to be fabricated. Here, we demonstrate how constriction-type weak links, patterned in parallel into the central conductor of a Nb coplanar resonator using a neon focused ion beam (FIB), can be used to implement a frequency-tunable resonator. We study transmission through two such devices and show how they realise high quality factor, tunable, field resilient devices which hold promise for future applications coupling to spin systems.
We have fabricated and studied a system of two tunable and coupled nonlinear superconducting resonators. The nonlinearity is introduced by galvanically coupled dc-SQUIDs. We simulate the system response by means of a circuit model, which includes an additional signal path introduced by the electromagnetic environment. Furthermore, we present two methods allowing us to experimentally determine the nonlinearity. First, we fit the measured frequency and flux dependence of the transmission data to simulations based on the equivalent circuit model. Second, we fit the power dependence of the transmission data to a model that is predicted by the nonlinear equation of motion describing the system. Our results show that we are able to tune the nonlinearity of the resonators by almost two orders of magnitude via an external coil and two on-chip antennas. The studied system represents the basic building block for larger systems, allowing for quantum simulations of bosonic many-body systems with a larger number of lattice sites.
In scanning tunneling microscopy (STM) conductance curves, the superconducting gap of cuprates is sometimes accompanied by small sub-gap structures at very low energy. This was documented early on near vortex cores and later at zero magnetic field. Using mean-field toy models of coexisting d-wave superconductivity ($d$SC), emph{d}-form factor density wave ($d$FF-DW), and extended s-wave pair density wave ($s$PDW), we find agreement with this phenomenon, with $s$PDW playing a critical role. We explore the high variability of the gap structure with changes in band structure and density wave (DW) wave vector, thus explaining why sub-gap structures may not be a universal feature in cuprates. In the absence of nesting, non-superconducting results never show signs of pseudogap, even for large density waves magnitudes, therefore reinforcing the idea of a distinct origin for the pseudogap, beyond mean-field theory. Therefore, we also briefly consider the effect of DWs on a pre-existing pseudogap.