Do you want to publish a course? Click here

Density Waves Cause Sub-Gap Structures but no Pseudogap in Superconducting Cuprates

188   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In scanning tunneling microscopy (STM) conductance curves, the superconducting gap of cuprates is sometimes accompanied by small sub-gap structures at very low energy. This was documented early on near vortex cores and later at zero magnetic field. Using mean-field toy models of coexisting d-wave superconductivity ($d$SC), emph{d}-form factor density wave ($d$FF-DW), and extended s-wave pair density wave ($s$PDW), we find agreement with this phenomenon, with $s$PDW playing a critical role. We explore the high variability of the gap structure with changes in band structure and density wave (DW) wave vector, thus explaining why sub-gap structures may not be a universal feature in cuprates. In the absence of nesting, non-superconducting results never show signs of pseudogap, even for large density waves magnitudes, therefore reinforcing the idea of a distinct origin for the pseudogap, beyond mean-field theory. Therefore, we also briefly consider the effect of DWs on a pre-existing pseudogap.



rate research

Read More

The cuprate high temperature superconductors develop spontaneous charge density wave (CDW) order below a temperature $T_{CDW}$ and over a wide range of hole doping (p). An outstanding challenge in the field is to understand whether this modulated phase is related to the more exhaustively studied pseudogap and superconducting phases. To address this issue it is important to extract the energy scale $Delta_{CDW}$ associated with the charge modulations, and to compare it with the pseudogap (PG) $Delta_{PG}$ and the superconducting gap $Delta_{SC}$. However, while $T_{CDW}$ is well-characterized from earlier works little has been known about $Delta_{CDW}$ until now. Here, we report the extraction of $Delta_{CDW}$ for several cuprates using electronic Raman spectroscopy. Crucially, we find that, upon approaching the parent Mott state by lowering $p$, $Delta_{CDW}$ increases in a manner similar to the doping dependence of $Delta_{PG}$ and $Delta_{SC}$. This shows that CDW is an unconventional order, and that the above three phases are controlled by the same electronic correlations. In addition, we find that $Delta_{CDW} approx Delta_{SC}$ over a substantial doping range, which is suggestive of an approximate emergent symmetry connecting the charge modulated phase with superconductivity.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and the temperature Tc above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* allow us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.
171 - Matthias Opel 1999
We present results of Raman scattering experiments in differently doped Bi-2212 single crystals. Below Tc the spectra show pair-breaking features in the whole doping range. The low frequency power laws confirm the existence of a $d_{x^2-y^2}$-wave order parameter. In the normal state between Tc and T* = 200K we find evidence for a pseudogap in B2g symmetry. Upon doping its effect on the spectra decreases while its energy scale appears to be unchanged.
We express the superconducting gap, $Delta(T)$, in terms of thermodynamic functions in both $s$- and d-wave symmetries. Applying to Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ and Y$_{0.8}$Ca$_{0.2}$Ba$_2$Cu$_3$O$_{7-delta}$ we find that for all dopings $Delta(T)$ persists, as a partial gap, high above $T_c$ due to strong superconducting fluctuations. Therefore in general two gaps are present above $T_c$, the superconducting gap and the pseudogap, effectively reconciling two highly polarized views concerning pseudogap physics.
An interaction between electrons and lattice vibrations (phonons) results in two fundamental quantum phenomena in solids: in three dimensions it can turn a metal into a superconductor whereas in one dimension it can turn a metal into an insulator. In two dimensions (2D) both superconductivity and charge-density waves (CDW) are believed to be anomalous. In superconducting cuprates, critical transition temperatures are unusually high and the energy gap may stay unclosed even above these temperatures (pseudogap). In CDW-bearing dichalcogenides the resistivity below the transition can decrease with temperature even faster than in the normal phase and a basic prerequisite for the CDW, the favourable nesting conditions (when some sections of the Fermi surface appear shifted by the same vector), seems to be absent. Notwithstanding the existence of alternatives to conventional theories, both phenomena in 2D still remain the most fascinating puzzles in condensed matter physics. Using the latest developments in high-resolution angle-resolved photoemission spectroscopy (ARPES) here we show that the normal-state pseudogap also exists in one of the most studied 2D examples, dichalcogenide 2H-TaSe2, and the formation of CDW is driven by a conventional nesting instability, which is masked by the pseudogap. Our findings reconcile and explain a number of unusual, as previously believed, experimental responses as well as disprove many alternative theoretical approaches. The magnitude, character and anisotropy of the 2D-CDW pseudogap are intriguingly similar to those seen in superconducting cuprates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا