Do you want to publish a course? Click here

Extraplanar H II Regions in Spiral Galaxies. II. In Situ Star Formation in the Interstellar Thick Disk of NGC 4013

102   0   0.0 ( 0 )
 Added by J. Christopher Howk
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of an H$alpha$ emitting knot in the thick disk of NGC 4013, demonstrating it is an H II region surrounding a cluster of young hot stars $z = 860$ pc above the plane of this edge-on spiral galaxy. With LBT/MODS spectroscopy we show this H II region has an H$alpha$ luminosity $sim 4$ - 7 times that of the Orion nebula, with an implied ionizing photon production rate $log Q_0 gtrsim 49.4$ (photons s$^{-1}$). HST/WFPC2 imaging reveals an associated blue continuum source with $M_{V} = -8.21pm0.24$. Together these properties demonstrate the H II region is powered by a young cluster of stars formed {em in situ} in the thick disk with an ionizing photon flux equivalent to $sim$6 O7 V stars. If we assume $approx6$ other extraplanar halpha -emitting knots are H II regions, the total thick disk star formation rate of gc 4013 is $sim 5 times 10^{-4}$ M$_odot$ yr$^{-1}$. The star formation likely occurs in the dense clouds of the interstellar thick disk seen in optical images of dust extinction and CO emission.



rate research

Read More

The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous thick disk H II region located at $z = 860$ pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an H$alpha$ luminosity $sim4-7$ times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of $approx2$ lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by $-0.32pm 0.09$ dex). This implies incomplete mixing of material in the thick disk on small scales (100s of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently-proposed fountain-driven accretion models.
Gas infall and outflow are critical for determining the star formation rate and chemical evolution of galaxies but direct measurements of gas flows are diffcult to make. Young massive stars and HII regions in the halos of galaxies are potential tracers for accretion and/or outflows of gas. Gas phase abundances of three HII regions in the lower halos of the edge-on galaxies NGC 3628 and NGC 4522 are determined by analysing optical long-slit spectra. The observed regions have projected distances to the midplane of their host from 1.4 to 3 kpc. With the measured flux densities of the optical nebular emission lines, we derive the oxygen abundance 12 + log(O/H) for the three extraplanar HII regions. The analysis is based on one theoretical and two empirical strong-line calibration methods. The resulting oxygen abundances of the extraplanar HII regions are comparable to the disk HII regions in one case and a little lower in the other case. Since our results depend on the accuracy of the metallicity determinations, we critically discuss the difference of the calibration methods we applied and confirm previously noted offsets. From our measurements, we argue that these three extraplanar HII regions were formed in the disk or at least from disk material. We discuss the processes that could transport disk material into the lower halo of these systems and conclude that gravitational interaction with a companion galaxy is most likely for NGC 3628 while ram pressure is favoured in the case of NGC 4522.
Using the short-high module of the Infrared Spectrograph on the Spitzer Space Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71-micron emission lines in nine H II regions in the dwarf irregular galaxy NGC 6822. These lines arise from the dominant ionization states of the elements neon (Ne$^{++}$, Ne$^+$) and sulphur (S$^{3+}$, S$^{++}$), thereby allowing an analysis of the neon to sulphur abundance ratio as well as the ionic abundance ratios Ne$^+$/Ne$^{++}$ and S$^{3+}$/S$^{++}$. By extending our studies of H II regions in M83 and M33 to the lower metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio. We find that the Ne/S ratio appears to be fairly universal, with not much variation about the ratio found for NGC 6822: the median (average) Ne/S ratio equals 11.6 (12.2$pm$0.8). This value is in contrast to Asplund et al.s currently best estimated value for the Sun: Ne/S = 6.5. In addition, we continue to test the predicted ionizing spectral energy distributions (SEDs) from various stellar atmosphere models by comparing model nebulae computed with these SEDs as inputs to our observational data, changing just the stellar atmosphere model abundances. Here we employ a new grid of SEDs computed with different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these changes to the SED show similar trends to those seen upon changing just the nebular gas metallicities in our plasma simulations: lower metallicity results in higher ionization. This trend agrees with the observations.
95 - Si-Yue Yu , Luis C. Ho , 2021
We investigate the impact of spiral structure on global star formation using a sample of 2226 nearby bright disk galaxies. Examining the relationship between spiral arms, star formation rate (SFR), and stellar mass, we find that arm strength correlates well with the variation of SFR as a function of stellar mass. Arms are stronger above the star-forming galaxy main sequence (MS) and weaker below it: arm strength increases with higher $log,({rm SFR}/{rm SFR}_{rm MS})$, where ${rm SFR}_{rm MS}$ is the SFR along the MS. Likewise, stronger arms are associated with higher specific SFR. We confirm this trend using the optical colors of a larger sample of 4378 disk galaxies, whose position on the blue cloud also depends systematically on spiral arm strength. This link is independent of other galaxy structural parameters. For the subset of galaxies with cold gas measurements, arm strength positively correlates with HI and H$_2$ mass fraction, even after removing the mutual dependence on $log,({rm SFR}/{rm SFR}_{rm MS})$, consistent with the notion that spiral arms are maintained by dynamical cooling provided by gas damping. For a given gas fraction, stronger arms lead to higher $log,({rm SFR}/{rm SFR}_{rm MS})$, resulting in a trend of increasing arm strength with shorter gas depletion time. We suggest a physical picture in which the dissipation process provided by gas damping maintains spiral structure, which, in turn, boosts the star formation efficiency of the gas reservoir.
We compare the accuracy of various methods for determining the transfer of the diffuse Lyman continuum in HII regions, by comparing them with a high-resolution discrete-ordinate integration. We use these results to suggest how, in multidimensional dynamical simulations, the diffuse field may be treated with acceptable accuracy without requiring detailed transport solutions. The angular distribution of the diffuse field derived from the numerical integration provides insight into the likely effects of the diffuse field for various material distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا