Do you want to publish a course? Click here

Effect of edge defects on band structure of zigzag graphene nanoribbons

132   0   0.0 ( 0 )
 Added by Rakesh Kumar
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp_3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp_3 to sp_2 hybridized carbon atoms. On the basis of theoretical analyses, band gap values of ZGNRs are found to be strongly dependent on relative arrangement of sp3 to sp2 hybridized carbon atoms at the edges for a defect concentration; so the findings would greatly help in understanding band gap of nanoribbons for their electronic applications.



rate research

Read More

144 - H. Sevincli , G. Cuniberti 2009
We investigate electron and phonon transport through edge disordered zigzag graphene nanoribbons based on the same methodological tool of nonequilibrium Green functions. We show that edge disorder dramatically reduces phonon thermal transport while being only weakly detrimental to electronic conduction. The behavior of the electronic and phononic elastic mean free paths points to the possibility of realizing an electron-crystal coexisting with a phonon-glass. The calculated thermoelectric figure of merit (ZT) values qualify zigzag graphene nanoribbons as a very promising material for thermoelectric applications.
265 - S. Krompiewski 2014
It is shown that apart from well-known factors, like temperature, substrate, and edge reconstruction effects, also the presence of external contacts is destructive for the formation of magnetic moments at the edges of graphene nanoribbons. The edge magnetism gradually decreases when graphene/electrode interfaces become more and more transparent for electrons. In addition to the graphene/electrode coupling strength, also the aspect ratio parameter, i.e. a width/length ratio of the graphene nanoribbon, is crucial for the suppression of edge magnetism. The present theory uses a tight-binding method, based on the mean-field Hubbard Hamiltonian for $pi$ electrons, and the Greens function technique within the Landauer-Buttiker approach.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs), quasi one-dimensional semiconducting strips of graphene featuring two parallel zigzag edges along the main axis of the ribbon, are predicted to host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width. Despite recent advances in the bottom-up synthesis of atomically-precise ZGNRs, their unique electronic structure has thus far been obscured from direct observations by the innate chemical reactivity of spin-ordered edge states. Here we present a general technique for passivating the chemically highly reactive spin-polarized edge states by introducing a superlattice of substitutional nitrogen-dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunneling spectroscopy reveal a giant spin splitting of the low-lying nitrogen lone-pair flat bands by a large exchange field (~850 Tesla) induced by the spin-polarized ferromagnetically ordered edges of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.
Stone-Wales (SW) defects are favorably existed in graphenelike materials with honeycomb lattice structure and potentially employed to change the electronic properties in band engineering. In this paper, we investigate structural and electronic properties of SW defects in bulk silicene and its nanoribbons as a function of their concentration using the methods of periodic boundary conditions with first-principles calculations. We first calculate the formation energy, structural properties, and electronic band structures of SW defects in bulk silicene, with dependence on the concentration of SW defects. Our results show a good agreement with available values from the previous first-principles calculations. The energetics, structural aspects, and electronic properties of SW defects with dependence on defect concentration and location in edge-hydrogenated zigzag silicene nanoribbons are obtained. For all calculated concentrations, the SW defects prefer to locate at the edge due to the lower formation energy. The SW defects at the center of silicene nanoribbons slightly influence on the electronic properties, whereas the SW defects at the edge of silicene nanoribbons split the degenerate edge states and induce a sizable gap, which depends on the concentration of defects. It is worth to find that the SW defects produce a perturbation repulsive potential, which leads the decomposed charge of edge states at the side with defect to transfer to the other side without defect.
We propose, for the first time, a valley Seebeck effect in gate tunable zigzag graphene nanoribbons as a result of the interplay between thermal gradient and valleytronics. A pure valley current is further generated by the thermal gradient as well as the external bias. In a broad temperature range, the pure valley current is found to be linearly dependent on the temperature gradient while it increases with the increasing temperature of one lead for a fixed thermal gradient. A valley field effect transistor (FET) driven by the temperature gradient is proposed that can turn on and off the pure valley current by gate voltage. The threshold gate voltage and on valley current are proportional to the temperature gradient. When the system switches on at positive gate voltage, the pure valley current is nearly independent of gate voltage. The valley transconductance is up to 30 {mu}S if we take Ampere as the unit of the valley current. This valley FET may find potential application in future valleytronics and valley caloritronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا