No Arabic abstract
Stone-Wales (SW) defects are favorably existed in graphenelike materials with honeycomb lattice structure and potentially employed to change the electronic properties in band engineering. In this paper, we investigate structural and electronic properties of SW defects in bulk silicene and its nanoribbons as a function of their concentration using the methods of periodic boundary conditions with first-principles calculations. We first calculate the formation energy, structural properties, and electronic band structures of SW defects in bulk silicene, with dependence on the concentration of SW defects. Our results show a good agreement with available values from the previous first-principles calculations. The energetics, structural aspects, and electronic properties of SW defects with dependence on defect concentration and location in edge-hydrogenated zigzag silicene nanoribbons are obtained. For all calculated concentrations, the SW defects prefer to locate at the edge due to the lower formation energy. The SW defects at the center of silicene nanoribbons slightly influence on the electronic properties, whereas the SW defects at the edge of silicene nanoribbons split the degenerate edge states and induce a sizable gap, which depends on the concentration of defects. It is worth to find that the SW defects produce a perturbation repulsive potential, which leads the decomposed charge of edge states at the side with defect to transfer to the other side without defect.
During the synthesis of ultra-thin materials with hexagonal lattice structure Stone-Wales (SW) type of defects are quite likely to be formed and the existence of such topological defects in the graphene-like structures results in dramatical changes of their electronic and mechanical properties. Here we investigate the formation and reactivity of such SW defects in silicene. We report the energy barrier for the formation of SW defects in freestanding (~2.4 eV) and Ag(111)-supported (~2.8 eV) silicene and found it to be significantly lower than in graphene (~9.2 eV). Moreover, the buckled nature of silicene provides a large energy barrier for the healing of the SW defect and therefore defective silicene is stable even at high temperatures. Silicene with SW defects is semiconducting with a direct bandgap of 0.02 eV and this value depends on the concentration of defects. Furthermore, nitrogen substitution in SW defected silicene shows that the defect lattice sites are the least preferable substitution locations for the N atoms. Our findings show the easy formation of SW defects in silicene and also provide a guideline for bandgap engineering in silicene-based materials through such defects.
In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp_3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp_3 to sp_2 hybridized carbon atoms. On the basis of theoretical analyses, band gap values of ZGNRs are found to be strongly dependent on relative arrangement of sp3 to sp2 hybridized carbon atoms at the edges for a defect concentration; so the findings would greatly help in understanding band gap of nanoribbons for their electronic applications.
Using the density functional theory, we have demonstrated the chemical functionalization of semiconducting graphene nanoribbons (GNRs) with Stone-Wales (SW) defects by carboxyl (COOH) groups. It is found that the geometrical structures and electronic properties of the GNRs changed significantly, and the electrical conductivity of the system could be considerably enhanced by mono-adsorption and double-adsorption of COOH, which sensitively depends upon the axial concentration of SW defects COOH pairs (SWDCPs). With the increase of the axial concentration of SWDCPs, the system would transform from semiconducting behavior to p-type metallic behavior. This fact makes GNRs a possible candidate for chemical sensors and nanoelectronic devices based on graphene nanoribbons.
Carbon-based magnetic structures promise significantly longer coherence times than traditional magnetic materials, which is of fundamental importance for spintronic applications. An elegant way of achieving carbon-based magnetic moments is the design of graphene nanostructures with an imbalanced occupation of the two sublattices forming the carbon honeycomb lattice. According to Liebs theorem, this induces local magnetic moments that are proportional to the sublattice imbalance. Exact positioning of sublattice imbalanced nanostructures in graphene nanomaterials hence offers a route to control interactions between induced local magnetic moments and to obtain graphene nanomaterials with magnetically non-trivial ground states. Here, we show that such sublattice imbalanced nanostructures can be incorporated along a large band gap armchair graphene nanoribbon on the basis of asymmetric zigzag edge extensions, which is achieved by incorporating specifically designed precursor monomers during the bottom-up fabrication of the graphene nanoribbons. Scanning tunneling spectroscopy of an isolated and electronically decoupled zigzag edge extension reveals Hubbard-split states in accordance with theoretical predictions. Investigation of pairs of such zigzag edge extensions reveals ferromagnetic, antiferromagnetic or quenching of the magnetic interactions depending on the relative alignment of the asymmetric edge extensions. Moreover, a ferromagnetic spin chain is demonstrated for a periodic pattern of zigzag edge extensions along the nanoribbon axis. This work opens a route towards the design and fabrication of graphene nanoribbon-based spin chains with complex magnetic ground states.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs), quasi one-dimensional semiconducting strips of graphene featuring two parallel zigzag edges along the main axis of the ribbon, are predicted to host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width. Despite recent advances in the bottom-up synthesis of atomically-precise ZGNRs, their unique electronic structure has thus far been obscured from direct observations by the innate chemical reactivity of spin-ordered edge states. Here we present a general technique for passivating the chemically highly reactive spin-polarized edge states by introducing a superlattice of substitutional nitrogen-dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunneling spectroscopy reveal a giant spin splitting of the low-lying nitrogen lone-pair flat bands by a large exchange field (~850 Tesla) induced by the spin-polarized ferromagnetically ordered edges of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.